ERROR ANALYSIS ξ^{3} GRAPH DRAWING
 Physics Lab
 (PHY F110)

Navin Singh
Department of Physics 2102-B

Here you will learn about the errors!!

- Committing error is the part of an experiment.
- Estimating them is the art of experiment.
- This helps us to approach the maximum accuracy in the obtained results.

Categorically

- Error Analysis
- Graphical Analysis
- Significant digits

MEASUREMENT

Henry I (1100-1135) who decreed that the yard should be "the distance from the tip of the King's
 nose to the end of his outstretched thumb".

Measuring the length of a rod with rulers

On a ruler with a coarse scale, the rod is between 3 and 4 cm , and we estimate it to be about 3.3 cm . The instrument least count is 1 cm .
\square

On a ruler with a finer scale the rod is between 3.3 and 3.4 cm , and we estimate it to be about 3.38 cm . Instrument least count is 0.1 cm .

Error due to calculations

Error in the primary measurements cause uncertainty in the final measurement.
Errors in the measurement

$$
g=\frac{4 \pi^{2} L}{T^{2}}
$$

Error in measuring L and T will add up to the final result.

NOMENCLATURE OF ERRORS

- Blunder
- Systematic error
- Random error

BLUNDERS

- Experimenter makes a genuine mistake in reading an instrument wrongly.
- This can be avoided by taking large number of data points, discarding an entirely different value.

SYSTEMATIC ERRORS

- This is an instrumental error.
- Constant error which occurs all the time.
- Difficult to detect.
- Examples:The scale itself is incorrect; causes error in length measurement.
- Calibration of the instruments should be done to avoid the errors.

RANDOM ERRORS

- Caused by unknown and unpredictable changes in the experiment and in the instrument.
- By repeating the experiments to large number of times one can minimize this (statistical analysis).
- Difficult to be eliminated. Only one can estimate it.

Precision

- Random error is small, precision is high.
- High precision means minimum random error.

Precision

- Accuracy means the best possible mesurement (the true value).
- High accuracy means minimum systematic error.

Accuracy \& Precision

- Higher the accuracy; minimum the systematic error.
- Higher the precision; minimum the random error.

Accuracy with Precision

Measurement with high accuracy and precision is highly RELIABLE !!

Estimation of Errors: Least count

Maximum error in any primary measurement

- Instrument least count
- Effective least count

Figure 1 Measwring the length of a rod with coarse and fine ralers.
On a ruler with a coarse scale, the rod is between 3 and 4 cm , and we estimate it to be about 3.3 cm . The instrument least count is 1 cm .

On a ruler with a finer scale the rod is between 3.3 and 3.4 cm , and we estimate it to be about 3.38 cm . Instrument least count is 0.1 cm .

- Effective least count appears as $=0.3 \mathrm{~cm}$
- To be in the safer side Length $=3.3 \mathrm{~cm}$

Estimation of Errors: Least count

| 1 | 2 | 3 | 4111 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Effective Length = 3.3 cm

Effective Length $=$ 3.35 cm

- Always go for high least count apparatus.
- Higher the Accuracy, systematic error is minimum.

Error analysis (Statistical)

- One data point measurement.
- One variable measurement.
- Two variable measurement.

One Variable measurement

Diameter of a ball

One Variable measurement

Diameter of a ball: Mean Value

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Diameter of a ball: Standard Deviation

$$
\sigma(\Delta x)=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

One Variable measurement

Diameter of a ball: Mean Value

- Measure of dispersion of set of values.
- Defined as root mean square deviation from the mean value.
- If many data points are close to mean SD is small.
- Data points are equal to means, $\mathrm{SD}=0$.

One Variable measurement

Diameter of a ball $=(x \pm \Delta x)$ units

Linear fit of data between two variable

Linear fit

Let there are N points of measurements
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots\left(x_{N}, y_{N}\right)$

$$
y=m x+c
$$

where the measured/calculated values are x and y while, the slope m and the intercept, c you will obtain.

Linear fit of data between two variable

For the best fit line, the quantity S

$$
S=\sum_{i}\left(y_{i}-m x_{i}-c\right)^{2}
$$

should be minimum.
Thus, we can write,

$$
\begin{aligned}
\frac{\partial S}{\partial m} & =-2 \sum_{i}\left(y_{i}-m x_{i}-c\right) x_{i}=0 \\
\frac{\partial S}{\partial c} & =-2 \sum_{i}\left(y_{i}-m x_{i}-c\right)=0
\end{aligned}
$$

Linear fit of data between two variable

Thus, the slope and intercept will be,

$$
\begin{aligned}
m & =\frac{\sum\left(x_{i}-\bar{x}\right) * y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
c & =\bar{y}-m \bar{x}
\end{aligned}
$$

Graphical Method for Best Fit Line

- Plot all the data points.
- Plot centroid (x, y).
- Draw limiting lines (S1 and S2).
- Draw a best fit line (S)
- Get $\Delta S=\left(S_{1} \sim S_{2}\right) / 2$.

Propagation of Errors

If Δf is difference in a quantity $f(x, y, z)$ from accurate value then,

$$
\Delta f=\sqrt{\left(\frac{\partial f}{\partial x} \Delta x\right)^{2}+\left(\frac{\partial f}{\partial y} \Delta y\right)^{2}+\left(\frac{\partial f}{\partial z} \Delta z\right)^{2}}
$$

for small changes in $x, y, \& z$.

Propagation of Errors: Rule-1

Addition/Subtraction

$$
Z=X+Y
$$

or,

$$
Z=X-Y
$$

The error(uncertainty) will be

$$
\Delta Z=\sqrt{(\Delta X)^{2}+(\Delta Y)^{2}}
$$

Propagation of Errors: Rule-1

An example

Suppose we have measured the starting position as
$x_{1}=9.3 \pm 0.2 \mathrm{~m}$ and the finishing position as $x_{2}=14.4 \pm 0.3 \mathrm{~m}$. Then the displacement is,
$d=x_{2}-x_{1}=(14.4-9.3) \mathrm{m}=5.1 \mathrm{~m}$. The error
(uncertainty) in the displacement is

$$
\sqrt{0.2^{2}+0.3^{2}} \mathrm{~m}=0.36 \mathrm{~m}
$$

The result will be quoted as, $5.1 \pm 0.36 \mathrm{~m}$.

Propagation of Errors: Rule-2

Addition/Subtraction

$$
Z=X \times Y \quad \text { or } \quad Z=\frac{X}{Y}
$$

The error(uncertainty) will be

$$
\frac{\Delta Z}{Z}=\sqrt{\left(\frac{\Delta X}{X}\right)^{2}+\left(\frac{\Delta Y}{Y}\right)^{2}}
$$

Propagation of Errors: Rule-2

An example

$$
g=\frac{4 \pi^{2} L}{T^{2}} ; \quad \frac{\Delta g}{g}=\sqrt{\left(\frac{\Delta L}{L}\right)^{2}+\left(\frac{2 \Delta T}{T}\right)^{2}}
$$

Propagation of Errors: An example

We have measured a displacement of as $5.1 \pm 0.4 \mathrm{~m}$ in time $0.4 \pm 0.1 \mathrm{~s}$. What is the measured velocity and the error(uncertainty) in the velocity?

$$
\begin{aligned}
v & =\frac{5.1}{0.4}=12.75 \mathrm{~m} / \mathrm{s} \\
\frac{\Delta v}{v} & =\sqrt{\left(\frac{\Delta x}{x}\right)^{2}+\left(\frac{\Delta t}{t}\right)^{2}}=3.34 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The result will be quoted as, $12.75 \pm 3.34 \mathrm{~m}$.

Propagation of Errors: Rule-3

An example

$$
Z=X^{n}
$$

$$
\frac{\Delta Z}{Z}=n \frac{\Delta X}{X}
$$

An example: Error in volume of a sphere

$$
V=\frac{4}{3} \pi R^{3}
$$

Plotting a Graph: Some Advisory

- Use Sharp Pencil to draw the graph.
- Draw on full page of graph paper and use appropriate scale.
- Plot dependent variable on the vertical y-axis and the independent variable on the x-axis.
- Label the axes and the data points properly.
- Title the graph.
- Indicate error bars.

An Example Graph

Significant Figures

The digits required to express a number to the same accuracy as the measurement it represents are known as significant figures.

Understand the difference between 1 and 1.00

Number Significant digits

22	2
0.046	2

Least Count

How to find out least count of an instrument?

$$
\text { L.C. }=\frac{\text { Smallest Main Scale Reading }}{\text { Total Number of Vernier division }}
$$

More in class!

