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Here you will learn about the errors!!

• Committing error is the part of an experiment.

• Estimating them is the art of experiment.

• This helps us to approach the maximum

accuracy in the obtained results.
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Categorically

• Error Analysis

• Graphical Analysis

• Significant digits
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MEASUREMENT

Henry I (1100-1135) who

decreed that the yard

should be “the distance

from the tip of the King’s

nose to the end of his

outstretched thumb”.
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Measuring the length of a rod with rulers
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Error due to calculations

Error in the primary measurements cause

uncertainty in the final measurement.

Errors in the measurement

g =
4π2L

T 2

Error in measuring L and T will add up to the final

result.

6 / 36



Introduction Measurement Error Estimating the error Error analysis Linear Fit Propagation of Error

NOMENCLATURE OF ERRORS

• Blunder

• Systematic error

• Random error

7 / 36



Introduction Measurement Error Estimating the error Error analysis Linear Fit Propagation of Error

BLUNDERS

• Experimenter makes a genuine mistake in

reading an instrument wrongly.

• This can be avoided by taking large number of

data points, discarding an entirely different

value.
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SYSTEMATIC ERRORS

• This is an instrumental error.

• Constant error which occurs all the time.

• Difficult to detect.

• Examples:The scale itself is incorrect; causes error

in length measurement.

• Calibration of the instruments should be done to

avoid the errors.
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RANDOM ERRORS

• Caused by unknown and unpredictable changes in

the experiment and in the instrument.

• By repeating the experiments to large number of

times one can minimize this (statistical analysis).

• Difficult to be eliminated. Only one can estimate

it.
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Precision

• Random error is

small, precision is

high.

• High precision

means minimum

random error.
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Precision

• Accuracy means

the best possible

mesurement (the

true value).

• High accuracy

means minimum

systematic error.
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Accuracy & Precision

• Higher the accuracy; minimum the systematic

error.

• Higher the precision; minimum the random

error.
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Accuracy with Precision

Measurement with high

accuracy and precision is

highly RELIABLE !!
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Estimation of Errors: Least count

Maximum error in any primary measurement

• Instrument least

count

• Effective least

count

• Effective least count appears as = 0.3 cm

• To be in the safer side Length = 3.3 cm
15 / 36



Introduction Measurement Error Estimating the error Error analysis Linear Fit Propagation of Error

Estimation of Errors: Least count

Effective Length =

3.3 cm

Effective Length =

3.35 cm

• Always go for high least count apparatus.

• Higher the Accuracy, systematic error is

minimum.
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Error analysis (Statistical)

• One data point measurement.

• One variable measurement.

• Two variable measurement.
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One Variable measurement

Diameter of a ball
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One Variable measurement

Diameter of a ball: Mean Value

x̄ =
1

N

N∑
i=1

xi

Diameter of a ball: Standard Deviation

σ(∆x) =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2
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One Variable measurement

Diameter of a ball: Mean Value
• Measure of dispersion of set of values.

• Defined as root mean square deviation from

the mean value.

• If many data points are close to mean SD is

small.

• Data points are equal to means, SD = 0.
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One Variable measurement

Diameter of a ball = (x± ∆x) units
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Linear fit of data between two variable

Linear fit
Let there are N points of measurements

(x1, y1), (x2, y2)...(xN , yN)

y = mx +c

where the measured/calculated values are x and y

while, the slope m and the intercept, c you will

obtain.
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Linear fit of data between two variable

For the best fit line, the quantity S

S =
∑
i

(yi −mxi − c)2

should be minimum.

Thus, we can write,

∂S

∂m
= −2

∑
i

(yi −mxi − c)xi = 0

∂S

∂c
= −2

∑
i

(yi −mxi − c) = 0
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Linear fit of data between two variable

Thus, the slope and intercept will be,

m =

∑
(xi − x̄) ∗ yi∑

(xi − x̄)2

c = ȳ −mx̄
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Graphical Method for Best Fit Line

• Plot all the data points.

• Plot centroid (x, y).

• Draw limiting lines (S1

and S2).

• Draw a best fit line (S)

• Get ∆S = (S1 ∼ S2)/2.
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Propagation of Errors

If ∆f is difference in a quantity f(x, y, z) from

accurate value then,

∆f =

√(
∂f

∂x
∆x

)2

+

(
∂f

∂y
∆y

)2

+

(
∂f

∂z
∆z

)2

for small changes in x, y, &z.
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Propagation of Errors: Rule-1

Addition/Subtraction

Z = X + Y

or,

Z = X − Y

The error(uncertainty) will be

∆Z =
√

(∆X)2 + (∆Y )2
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Propagation of Errors: Rule-1

An example

Suppose we have measured the starting position as

x1 = 9.3 ± 0.2 m and the finishing position as

x2 = 14.4 ± 0.3 m. Then the displacement is,

d = x2 − x1 = (14.4 − 9.3) m = 5.1 m. The error

(uncertainty) in the displacement is√
0.22 + 0.32 m = 0.36 m

The result will be quoted as, 5.1 ± 0.36 m.
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Propagation of Errors: Rule-2

Addition/Subtraction

Z = X × Y or Z =
X

Y

The error(uncertainty) will be

∆Z

Z
=

√(
∆X

X

)2

+

(
∆Y

Y

)2
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Propagation of Errors: Rule-2

An example

g =
4π2L

T 2
;

∆g

g
=

√(
∆L

L

)2

+

(
2∆T

T

)2
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Propagation of Errors: An example

We have measured a displacement of as 5.1 ± 0.4 m

in time 0.4 ± 0.1 s. What is the measured velocity

and the error(uncertainty) in the velocity?

v =
5.1

0.4
= 12.75 m/s

∆v

v
=

√(
∆x

x

)2

+

(
∆t

t

)2

= 3.34 m/s

The result will be quoted as, 12.75 ± 3.34 m.
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Propagation of Errors: Rule-3

An example

Z = Xn;
∆Z

Z
= n

∆X

X

An example: Error in volume of a sphere

V =
4

3
πR3;

∆V

V
= 3

∆R

R

32 / 36



Introduction Measurement Error Estimating the error Error analysis Linear Fit Propagation of Error

Plotting a Graph: Some Advisory

• Use Sharp Pencil to draw the graph.

• Draw on full page of graph paper and use

appropriate scale.

• Plot dependent variable on the vertical y-axis

and the independent variable on the x-axis.

• Label the axes and the data points properly.

• Title the graph.

• Indicate error bars.
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An Example Graph
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Significant Figures

The digits required to express a number to the same

accuracy as the measurement it represents are

known as significant figures.

Understand the difference between 1 and 1.00

Number Significant digits

22 2

0.046 2
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Least Count

How to find out least count of an instrument?

L.C. =
Smallest Main Scale Reading

Total Number of Vernier division

More in class!
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