
Problem 6.40 and 6.41 Kleppner and Kolenkow
Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

6.40 A wheel with fine teeth is attached to the end of a spring with constant k and un-
stretched length l. For x > l, the wheel slips freely on the surface, but for x < l the
teeth mesh with the teeth on the ground so that it cannot slip. Assume that all the
mass of the wheel is in its rim.

a. The wheel is pulled to x = l + b and released. How close will it come to the wall
on its first trip?

b. How far out will it go as it leaves the wall?

c. What happens when the wheel next hits the gear track?

Sol. 6.40 Top-down approach: In order to know how close will it come to the wall, you need
to know, what is the energy it starts with from the equilibrium point at the begining
of gear track. A few things to note:

1. There is no dissipation to the right of gear track as there is no friction. If it
approaches gear track with velocity v0,
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2. Once on the gear-track it rolls without slipping and hence there is no dissipation.

3. When it hits the gear-track there is an impulsive force due to small protruding
structure of gear-track(the surface prior to it was smooth) and hence there is a
change in momentum.

∆p = m(v′ − v0) = f∆t (2)

Here f is the force of friction and v′ is the velocity with which it starts the journey
on gear-track. To obtain v′, note that right when it reaches the gear-track the
torque τ about the point of contact is zero, as friction and gravity are both
passing through the point of contact and spring force is zero at the equilibrium
position. Thus total angular momentum about point of contact is conserved. Now
according to eq. 6.13 (K&K),

Lz = I0ω + (R × MV )z (3)

That is, L about an axis through some origin is equal to L about an axis passing
through c.m. + L of the c.m. about the origin (here the point of contact). Thus
L about point of contact immedeatly before and after it reaches gear:

Li = Lf

mv0R = Iω + mv′R v′ = Rω

Note that once it is on the gear track it has developed spin and hence ω = v′/R
(rolling w/o slipping). From the above equation we get v′ = v0/2.

So it starts it’s journey on gear track with energy 1
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is a clear loss of 1

4
mv2

0 which is dissipated when it encounters the gear. From the
work-energy theorem,
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Alternatively,
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sol. a. Suppose it reaches distance a from the equilibrium position towards the wall.
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sol. b. To know how far away from the wall it goes on the return journey, we note that
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– it reaches the equilibrium point with same energy it started from the equilibrium
point as there is no dissipation on the gear track

– going past the gear track it will continue its spin motion as there is no torque
that can change its spin angular momentum. Note that spin angular momentum
is always about axis of rotation and hence spring force offers no torque and since
there is no friction spin is conserved. Its linear velocity however will continuously
decrease and hence it will slip (as v < Rω) and its velocity will come to zero at
the furthest point say c from the equilibrium point.

Thus from energy conservation:
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sol. c. Now when it begins its journey back toward equilibrium it is translating leftwards
but spinning clockwise. The translational velocity of the c.m. increases and hence
it gains orbital angular momentum in the counter-clockwise direction which becomes
maximum and equals the spin angular momentum when it reaches the equilibrium
poistion. That is

L = Lorbital + Lspin

= mR2ω − mR2ω

= 0

Since there is no net torque about point of contact at equilibrium position, L is con-
served and hence it is zero immediately after point of contact. Since wheel needs
non-zero L in order to roll over gear-track it gets stuck at the gear track. Ofcourse all
the remaining energy is dissipated.

If one instead considers torque about the axis of rotation passing through wheel’s c.m.
one finds that the torque due to force of enounter with gear about the c.m. produces
spin angular momentum that is equal and opposite to the existing spin angular momen-
tum and hence wheel stops spinning. Its linear motion is truncated and translational
kinetic enegy 1

4
mv2

0 is dissipated by the enounter with the gear track. Note that this
was also the amount dissipated in the first encounter.

6.41 This problem utilizes most of the important laws introduced so far.

A plank of length 2�l leans against the wall. It starts to slip downwards without friction.
Show that the top of the plank loses contact with the wall when it is two-thirds of its
initial height.
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Sol. 41 Shortest method: The most important thing to realize here is the trajectory of the
center of mass of the plank before it leaves the contact with the wall. The center of mass

follows a circle of radius �l. This follows if you look at the median to the hypotenuous
which will be half the length of hypotenuous and hence l. Alternatively the coordinates
of the center of mass are x = l sin θ and y = l cos θ and hence x2 + y2 = l2.

The plank loses contact with the wall when the horizontal normal reaction N1(and
hence ax) becomes negative. When ax becomes negative vx starts to decrease and
hence we must look for the angle θ at which vx is maximum; i.e., find dvx

dθ
. vx can be

obtained from energy conservation.

Loss in P.E. = Gain in k.E.

mgl(1 − cos θ) =
1

2
mlθ̇2 +

1

2
Iθ̇2 (7)

A few imporant points to note here:

– The first term on the RHS is translational KE of of CM where vcm = lθ̇.

– The second the rotation KE of plank. Here I = m2�l
2

12
= 1

3
m�l

2
. But we shall

instead write I = βm�l
2
. The advantage is, we can easily the trace the shape

dependence of the final answer in the terms of β and if β does not figure in the
final answer then it means that the result is independent of the shape of the object
(as it will actually be the case. In fact it is far more interesting than it appears.)

– Same θ̇ appears in both the terms. This is because the angle by which the plank
rotates about the center of mass is equal to the angle by which the CM has itself
moved on the ciruclar path.
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Find dvx

dθ
and equate it to zero to obtain:

cos θ =
2

3
(8)

– This is indeed independent of β and hence an object of any other shape would
loose contact with the wall at the same angle.

– The answer cos θ = 2
3

should ring bells. Did you see the same answer in the
contexts?

∗ An interesting corelation: In Problem 4.6 You found that the cube loses
the contact with the sphere at cos θ = 2

3
. In Problem 4.7 you found that

the normal reaction changes sign at cos θ = 2
3
. And now in the falling plank

we again find that it loses contact with the wall at the same angle.
The differences in the three systems are all apparent. Once you strip them
off the superficial differences it is the same system in different garbs. At the
core, it is mass m moving on a circular trajectory constrained by the difference
between centripetal force (a component of mg) and normal reaction. In the
problem of falling plank the normal reaction forces N1 and N2 conspire to
give a normal reaction N = N1 + N2 which can be considered to act on the
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CM in a radially outward direction, in a manner very similar to the radially
outwards normal reaction for the problem of cube sliding on a sphere and
bead slide on a ring. The complications in the ring problem follow from the
fact the bead threads through the ring and hence capable of pressing radially
inwards as well as outwards and hence N has a scope of becoming negative.
Nothing of the sorts happen in the case of cube slidding on a sphere and plank
sliding on the wall and hence they loose contact. Note that after loosing the
contact the trajectory of the CM of plank is no longer circular but a straight
vertical line (see solved example 3.5 in K&K).

The Dynamical Method: Note that coordinates of CM are (x, y) = (�l sin θ, �l cos θ).
The plank loses contact when N1 = max = mẍ = 0. Let us find N1 and N2.

N1 = max = mẍ = m�l cos θθ̈ − m�l sin θθ̇2

N2 − mg = may = mÿ = mg − m�l sin θθ̈ − m�l cos θθ̇2

So you need to know θ̈ and θ̇. Former is obtained by torque analysis and latter is
obtained by energy considerations.

In the torque analysis you may consider torque about any point keeping following
things in mind.

– If the reference point is at rest (say points A or E), you may find torque due to
all forces that are actually seen in the lab frame (gravity and normal reactions).

– If your reference point is accelarating then you may not or may need to take
pseudo-forces in to account depending on whether the accelarating reference point
is CM or not.

Torque about A: Since point A is at rest we do not need to consider pseudo forces.
The torque equation is then:

dLA

dt
= τA = 2N2 �l sin θ − mg �l sin θ − 2N1 �l cos θ (9)

LA is the angular momentum about A and torque is positive when it is pointing out
of the page. Point A being not the CM, the angular momentum about A is the sum
of L of plank about CM and L of CM about about A.

LA = −m�l
2
θ̇ +

m�l
2
θ̇

3
= −

2m�l
2
θ̇

3
(10)

A subtle point: Note that you could have obtained MI about point A using parallel axis

theorem (IA = Icm + m�l
2

= 4
3
m�l

2
) which is different from what we got. This would be

true only if the the rotation of the CM about point of reference and the rotation about
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the CM are of equal magnitude and sign. In our problem this is true only of points
C and D but not points A and E and hence for point A we cannot use this theorem.
As you can check we got a relative negative sign for the two contributions as well as
difference in magnitudes.

From the τA and N1 and N2, we can isolate θ̈:

θ̈ =
3g

4l
sin θ (11)

From the enegy conservation mg �l = T + V we can get θ̇:

θ̇2 =
3g

2l
(1 − cos θ) (12)

Substituting for θ̇ and θ̈ in N1 = 0 we get

cos θ =
2

3
(13)

Torque about point B: Point B is accelarating, but since it is center of mass, we do not

need to use pseudo-force. LB = Icmθ̇ and Icm = m(2�l)2

12
= m�l

2

3

dLB

dt
=

m�l
2
θ̈

3
= τB = N2 �l sin θ − N1 �l cos θ

= mg �l sin θ − m�l
2
θ̈

This again leads to same equation of motion.

This solution along with all the slides have been uploaded on intrabits as well as on per-
sonal webpage: http://discovery.bits-pilani.ac.in/discipline/physics/rishikesh/physics1.html
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