
Chapter 8

Scheduling Resources and Costs

McGraw-Hill/Irwin

© 2008 The McGraw-Hill Companies, All Rights Reserved

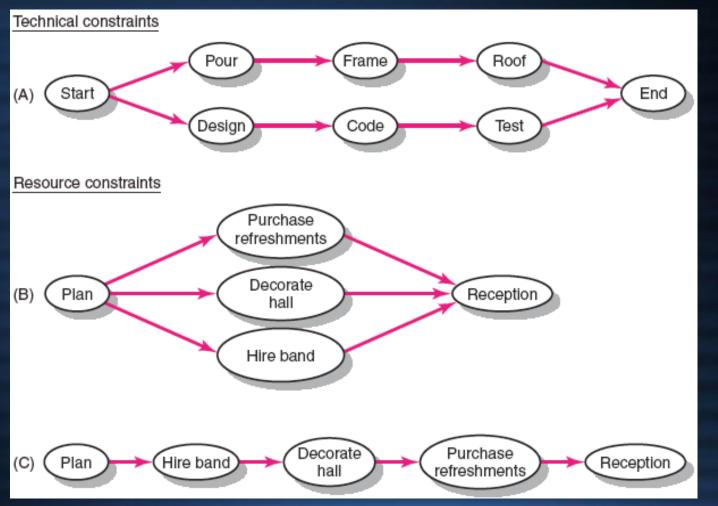
The Resource Problem

Resources and Priorities

- Project network times are not a schedule until resources have been assigned.
 - The implicit assumption is that resources will be available in the required amounts when needed.
 - Adding new projects requires making realistic judgments of resource availability and project durations.

Resource-Constrained Scheduling

Resource leveling (or smoothing) involves attempting to even out demands on resources by using slack (delaying noncritical activities) to manage resource utilization.


Types of Project Constraints

- Technical or Logic Constraints
 - Constraints related to the networked sequence in which project activities must occur

Resource Constraints

The absence, shortage, or unique interrelationship and interaction characteristics of resources that require a particular sequencing of project activities


Constraint Examples

Kinds of Resource Constraints

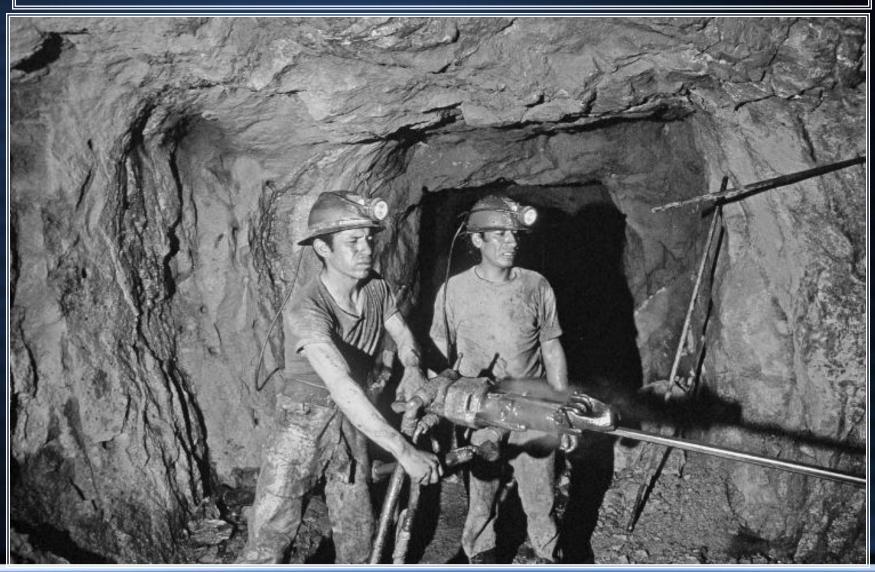
People

- Materials
- Equipment
- Working Capital

Classification of a Scheduling Problem

Classification of Problem

Using a priority matrix will help determine if the project is time or resource constrained


Time Constrained Project

- A project that must be completed by an imposed date
 Time is fixed, resources are flexible: additional resources are
 - required to ensure project meets schedule.

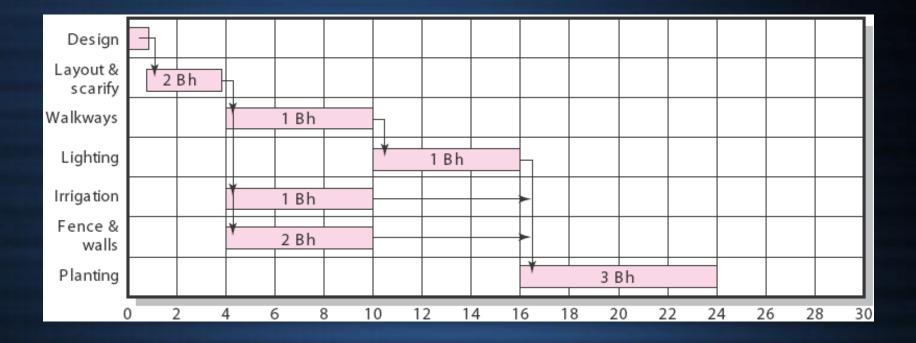
Resource Constrained Project

- A project in which the level of resources available cannot be exceeded
 - Resources are fixed, time is flexible: inadequate resources will delay the project.

A Third Constraint: Physical

Resource Allocation Methods

Limiting Assumptions


- Splitting activities is not allowed—once an activity is start, it is carried to completion.
- Level of resource used for an activity cannot be changed.
- Activities with the most slack pose the least risk.
- Reduction of flexibility does not increase risk.
- The nature of an activity (easy, complex) doesn't increase risk.

Resource Allocation Methods (cont'd)


Time-Constrained Projects

- Projects that must be completed by an imposed date
- Require the use of leveling techniques that focus on balancing or smoothing resource demands by using positive slack (delaying noncritical activities) to manage resource utilization over the duration of the project
 - o Peak resource demands are reduced.
 - o Resources over the life of the project are reduced.
 - o Fluctuation in resource demand is minimized.

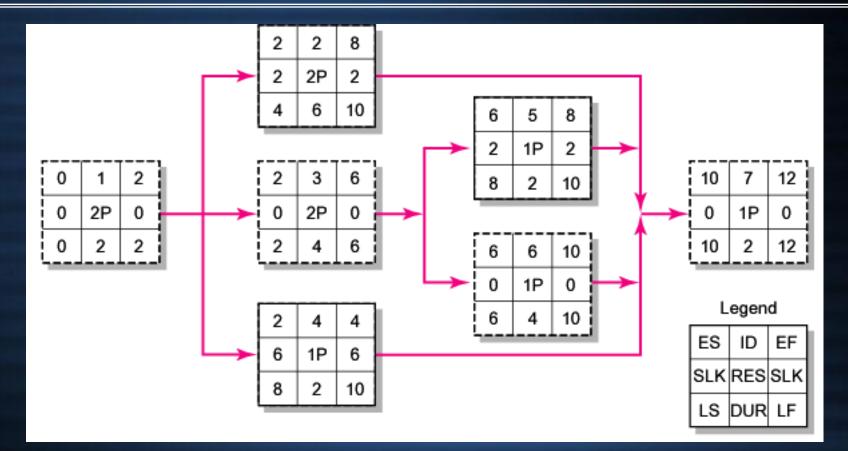
Botanical Garden

Botanical Garden (cont'd)

Resource Allocation Methods (cont'd)

- Resource Demand Leveling Techniques for Time-Constrained Projects
 - Advantages
 - o Peak resource demands are reduced.
 - o Resources over the life of the project are reduced.
 - o Fluctuation in resource demand is minimized.
 - Disadvantages
 - o Loss of flexibility that occurs from reducing slack
 - o Increases in the criticality of all activities

Resource Allocation Methods (cont'd)


Resource-Constrained Projects

- Projects that involve resources that are limited in quantity or by their availability
- Scheduling of activities requires the use of heuristics (rules-of-thumb) that focus on:
 - 1. Minimum slack
 - 2. Smallest (least) duration
 - 3. Lowest activity identification number

□ The parallel method is used to apply heuristics.

 An iterative process that starts at the first time period of the project and schedules period-by-period any activities scheduled to start using the three priority rules

Resource-Constrained Schedule through Period 2–3

Resource-Constrained Schedule through Period 2–3

ES resource load chart

ID	RES	DUR	ES	LF	TS () 1	2	3	4	5	6	7	89		1	01	1 1	2 1	13 1
1	2 P	2	0	2	0	2	2												
2	2 P	6	2	10	2			2	2	2	2	2	2						
3	2 P	4	2	6	0			2	2	2	2								
4	1 P	2	2	10	6			1	1										
5	1 P	2	6	10	2							1	1						
6	1 P	4	6	10	0							1	1	1	1				
7	1 P	2	10	12	0											1	1		
	T	otal re	source	eload		2P	2P	5P	5P	4P	4P	4P	4P	1P	1P	1P	1P		

FIGURE 8.4 (cont'd)

Resource-Constrained Schedule through Period 2–3

Resource-constrained schedule through period 2–3

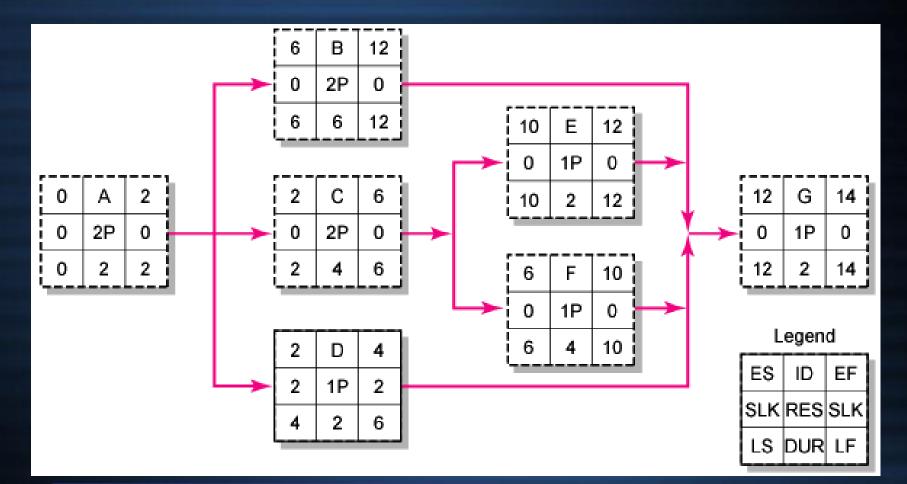
ID	RES	DUR	ES	LF	TS () '	1 2	2 3	3 4	4 !	5 (6	7	в 9	91	0 1	1 1	2 1	3 14
1	2P	2	0	2	0	2	2												
2	2P	6	_ک ع	10	`& ¹			X											
3	2P	4	2	6	0			2	2	2	2								
4	1P	2	2	10	6			1	1										
5	1P	2	6	10	2			1	 										
6	1P	4	6	10	0			1											
7	1P	2	10	12	0														
	Т	otal re	esour	ce loa	d	2P	2P	3P	3P	2P	2P								
	Resource available						3P	3P	3P	3P	3P	3P	3P	3P	3P	3P	3P		

FIGURE 8.4 (cont'd)

Resource-Constrained Schedule through Period 5–6

Resource-constrained schedule through period 5–6

ID	RES	DUR	ES	LF	SL ()	1 :	2	3	4	5	6	7	8	9	10	11 1	12 13	14
1	2P	2	0	2	0	2	2					1							
2	2P	6	234 5.6	1011 12	27.Q -7 -2			X	X	X	X			C.	6]			
3	2P	4	2	6	0			2	2	2	2								
4	1P	2	2	10	6			1	1		1	1						i	
5	1P	2	6	10	2						l]			
6	1P	4	6	10	0]			
7	1P	2	1011 12	1213 14	`Q -∖1 -2						1	1				X	Х		
		Tota	al reso	urce l	oad	2P	2P	ЗP	ЗP	2P	2P	i i							
		Res	ource	availa	able	ЗP	ЗP	ЗP	3P	3P	3P	3P	3P	ЗP	3P	ЗP	ЗP		


Resource-Constrained Schedule through Period 5–6

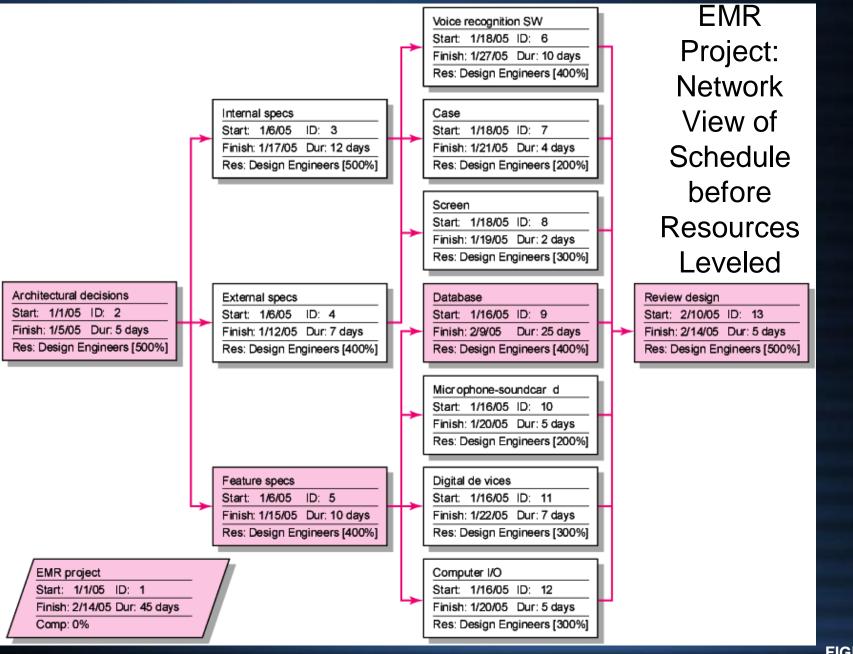
Final resource-constrained schedule

	Final resource constrained schedule																		
ID	RES	DUR	ES	LF	SLO) ·	1 :	2 :	3 4	4	5 (6 [.]	7 8	в 9	91	0 1	1 1	2 1	3 14
1	2P	2	0	2	0	2	2	Ĵ											
2	2P	6	234 5.6	10 N 12	270 -7-2			X	Х	х	Х	2	2	2	2	2	2		
З	2P	4	2	6	0			2	2	2	2								
4	1P	2	2	6	⁶ 2			1	1	SL	SL								
5	1P	2	678 9.10	1011 12	<u>870</u> -7-2							X	X	х	X	1	1		
6	1P	4	6	10	0			8				1	1	1	1				
7	1P	2	1011 12	1213 14	0 -1 -2											X	X	1	1
		Tota	al reso	urce l	oad	2P	2P	ЗP	3P	2P	2P	ЗP	3P	3P	3P	3P	ЗP	1P	1P
		Res	ource	availa	able	3P	ЗP	ЗP	ЗP	ЗP	ЗP	ЗP	ЗP	ЗP	ЗP	ЗP	ЗP	3P	3P
															-	·			

FIGURE 8.5 (cont'd)

Resource-Constrained Schedule through Period 5–6

New, resource-constrained network


FIGURE 8.5 (cont'd)

Computer Demonstration of Resource-Constrained Scheduling

EMR Project

- The development of a handheld electronic medical reference guide to be used by emergency medical technicians and paramedics
- Problem

There are only eight design engineers who can be assigned to the project due to a shortage of design engineers and commitments to other projects.

EMR Project before Resources Added

									Ja	nuary													Feb	ruary					
ID	Task Name	Start	Finish	Late Start	Late Finish	Free Slack	Total Slack	27 29	31	2 4	1 6	6 8	10	12	14	16	18	20	22	24 20	6 28	30	1	3	5 7	79	11	13	15
1	MRE project	Tue 1/1/05	Thu 2/14/05	Tue 1/1/05	Thu 2/14/05	0 days	0 days		V																				Л
2	Architectural decisions	Tue 1/1/05	Sat 1/5/05	Tue 1/1/05	Sat 1/5/05	0 days	0 days				Ŋ	1					_					į							
3	Internal specs	Sun 1/6/05	Thu 1/17/05	Sat 1/19/05	Wed 1/30/05	0 days	13 days		į		Y	(Ь					_ į							
4	External specs	Sun 1/6/05	Sat 1/12/05	Thu 1/24/05	Wed 1/30/05	5 days	18 days				Y	(_							
4 5	Feature specs	Sun 1/6/05	Tue 1/15/05	Sun 1/6/05	Tue 1/15/05	0 days	0 days		ł							h	1												
6	Voice recognition SW	Fri 1/18/05	Sun 1/27/05	Thu 1/31/05	Sat 2/9/05	13 days	13 days		į							1	1 4												
7	Case	Fri 1/18/05	Mon 1/21/05	Wed 2/6/05	Sat 2/9/05	19 days	19 days		ł							1	14												
7 8	Screen	Fri 1/18/05	Sat 1/19/05	Fri 2/8/05	Sat 2/9/05	21 days	21 days									¥													
9	Database	Wed 1/16/05	Sat 2/9/05	Wed 1/16/05	Sat 2/9/05	0 days	0 days		į							Y											٦.		
10	Microphone-soundcard	Wed 1/16/05	Sun 1/20/05	Tue 2/5/05	Sat 2/9/05	20 days	20 days		Ì							Y													
11	Digital devices	Wed 1/16/05	Tue 1/22/05	Sun 2/3/05	Sat 2/9/05	18 days	18 days									Y													
12	Computer I/O	Wed 1/16/05	Sun 1/20/05	Tue 2/5/05	Sat 2/9/05	20 days	20 days																			_	¥		
13	Review design	Sun 2/10/05	Thu 2/14/05	Sun 2/10/05	Thu 2/14/05	0 days	0 days																				1		

Task	Slack
Critical task	Summary

EMR Project—Time Constrained Resource Usage View, January 15–23, 2005

Resource Name	Work	Jan 15,	05					Jan 21,	05	
		Т	w	Т	F	S	S	м	Т	W
Design engineers	3,024 hrs	72h	136h	136h	168h	168h	144h	104h	88h	64h
Architectural decisions	200 hrs									
Internal specs	480 hrs	40h	40h	40h						
External specs	224 hrs									
Feature specs	320 hrs	32h								
Voice recognition SW	320 hrs				32h	32h	32h	32h	32h	32h
Case	64 hrs				16h	16h	16h	16h		
Screen	48 hrs				24h	24h				
Database	800 hrs		32h	32h	32h	32h	32h	32h	32h	32h
Microphone-soundcard	80 hrs		16h	16h	16h	16h	16h			
Digital devices	168 hrs		24h	24h	24h	24h	24h	24h	24h	
Computer I/O	120 hrs		24h	24h	24h	24h	24h			
Review design	200 hrs									

FIGURE 8.8A

Resource Loading Chart for EMR Project, January 15–23, 2005

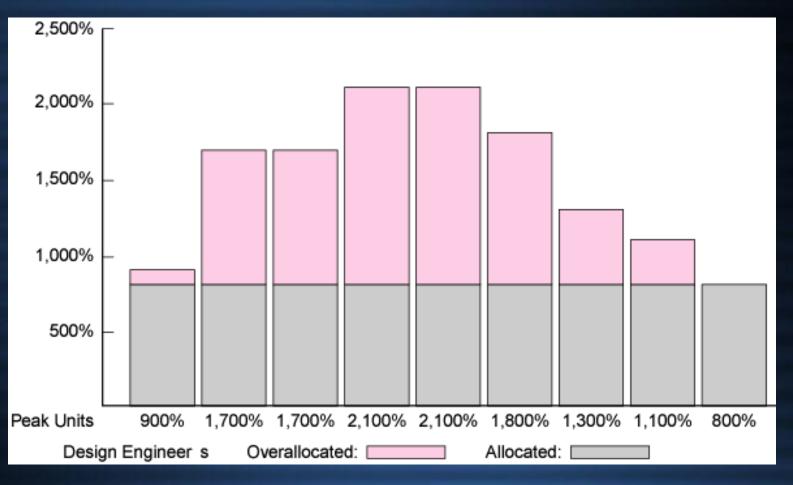
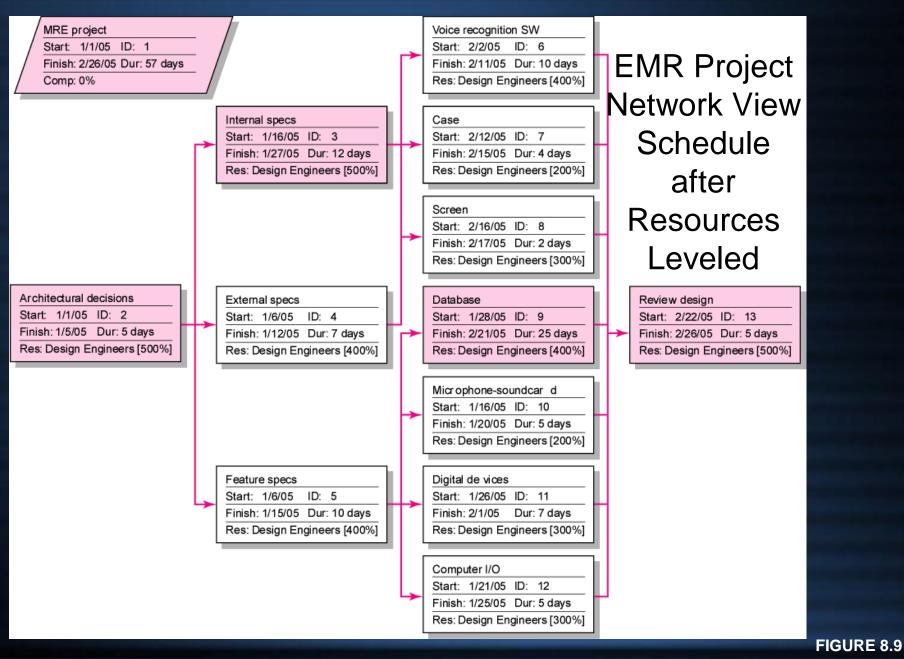
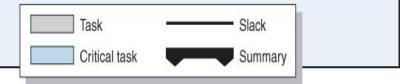




FIGURE 8.A8B

EMR Project Resources Leveled

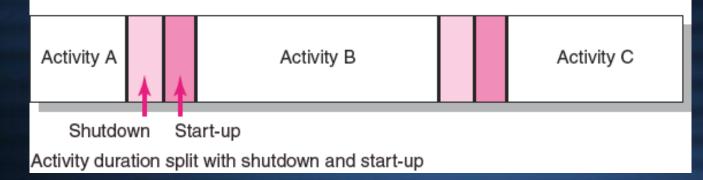
								January		February .
ID	Task Name	Start	Finish	Late Start	Late Finish	Free Slack	Total Slack	27 29 31 2 4 6	8 10 12 14 16 18 20 22 24 26 28 30	1 3 5 7 9 11 13 15 17 19 21 23 25 27
1	EMR project	Tue 1/1	Thu 2/26	Tue 1/1	Tue 2/26	0 days	0 days			
2	Architectural decisions	Tue 1/1	Sat 1/5	Tue 1/1	Sat 1/5	0 days	0 days	5	Ŷ	
3	Internal specs	Wed 1/16	Sun 1/27	Sun 1/20	Thu 1/31	0 days	4 days	•	5	
4	External specs	Sun 1/6	Sat 1/12	Fri 1/25	Thu 1/31	15 days	19 days	¥	4	
5	Feature specs	Sun 1/6	Tue 1/15	Sun 1/6	Tue 1/15	0 days	0 days		4	4
6	Voice recognition SW	Sat 2/2	Mon 2/11	Tue 2/12	Thu 2/21	10 days	10 days			4
7	Case	Tue 2/12	Fri 2/15	Mon 2/18	Thu 2/21	6 days	6 days			2
8	Screen	Sat 2/16	Sun 2/17	Wed 2/20	Thu 2/21	4 days	4 days	1		4
9	Database	Mon 1/28	Thu 2/21	Mon 1/28	Thu 2/21	0 days	0 days	ļ.	¥	4
10	Microphone-soundcard	Wed 1/16	Sun 1/20	Sun 2/17	Thu 2/21	32 days	32 days	ł	2	
11	Digital devices	Sat 1/26	Fri 2/1	Fri 2/15	Thu 2/21	20 days	20 days		3	
12	Computer I/O	Mon 1/21	Fri 1/25	Sun 2/17	Thu 2/21	27 days	27 days		3	
13	Review design	Fri 2/22	Tue 2/26	Fri 2/22	Tue 2/26	0 days	0 days			5

The Impacts of Resource-Constrained Scheduling

- Reduces delay but reduces flexibility
- Increases sensitivity of the network
- Increases scheduling complexity
- May make traditional critical path no longer meaningful
- Can break sequence of events
- May cause parallel activities to become sequential and critical activities with slack to become noncritical

Splitting/Multitasking

Splitting/Multitasking


- A scheduling technique use to get a better project schedule and/or increase resource utilization
 - Involves interrupting work on an activity to employ the resource on another activity, then returning the resource to finish the interrupted work
 - o Is feasible when startup and shutdown costs are low
 - o Is considered the major reason why projects fail to meet schedule

Splitting/Multitasking

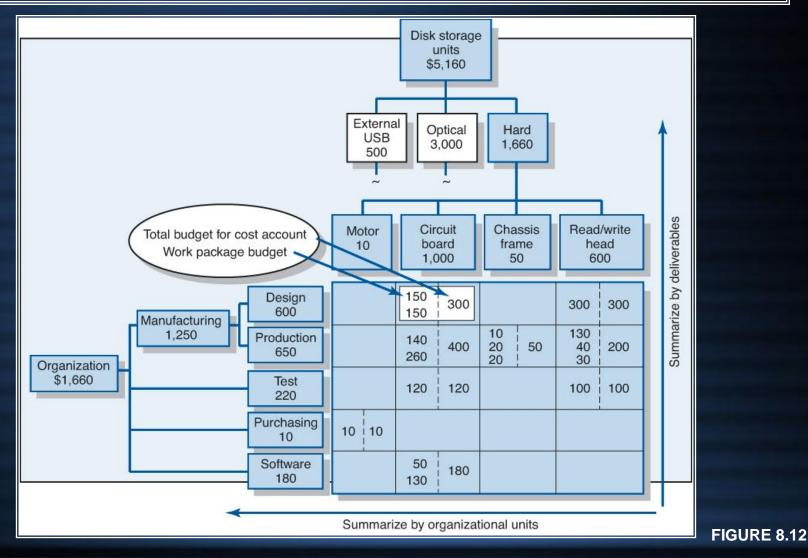
Activity duration without splitting

Activity duration split into three segments—A, B, C

Assigning Project Work

- Factors to Consider in Assigning Work:
 - Don't always pick the same people for the toughest assignments.
 - Choose people with an eye to fostering their development through participation on the project.
 - Pick people with compatible work habits and personalities but who complement each other.
 - Team-up veterans with new hires to share experience and socialize newcomers into the organization.
 - Select people who may need to learn work together on later stages of the project or other projects.

Multiproject Resource Schedules


- Multiproject Scheduling Problems
 - Overall project slippage
 - o Delay on one project creates delays for other projects.
 - □ Inefficient resource application
 - o The peaks and valleys of resource demands create scheduling problems and delays for projects.
 - Resource bottlenecks
 - Shortages of critical resources required for multiple projects cause delays and schedule extensions.

Multiproject Resource Schedules

Managing Multiproject Scheduling

- Create project offices or departments to oversee the scheduling of resources across projects.
- Use a project priority queuing system: first come, first served for resources.
- Centralize project management: treat all projects as a part of a "megaproject."
- Outsource projects to reduce the number of projects handled internally.

Creating a Time-Phased Budget

Creating a Time-Phased Budget (cont'd)

		Wo	•	le Time-Ph Ibor cost o	ased Budge nly	ət		
Work Pack	age Descri	ption <u> </u>	est		Page	1	of	1
Work Pack	age ID	1.1.3.2.3			Project		PC Protoy	pe
Deliverable	e	Circuit boa	Ird		Date	3/24	/xx	
Responsib	le organiza	tion unit	Test		Estimat	orCE	G	
Work Pack	age Duratio	on <u>3</u>	weeks		Total lat	oor cost	\$120	
		ті	me-Phase	d Labor B	udget (\$00	0)		
Work	Resource	Labor			Work Period	dsWeeks		
Package	Resource	rate	1	2	3	4	5	Total
Code 1.1.3.2.3	Quality testers	\$xxxx/ week	\$40	\$30	\$50			\$120

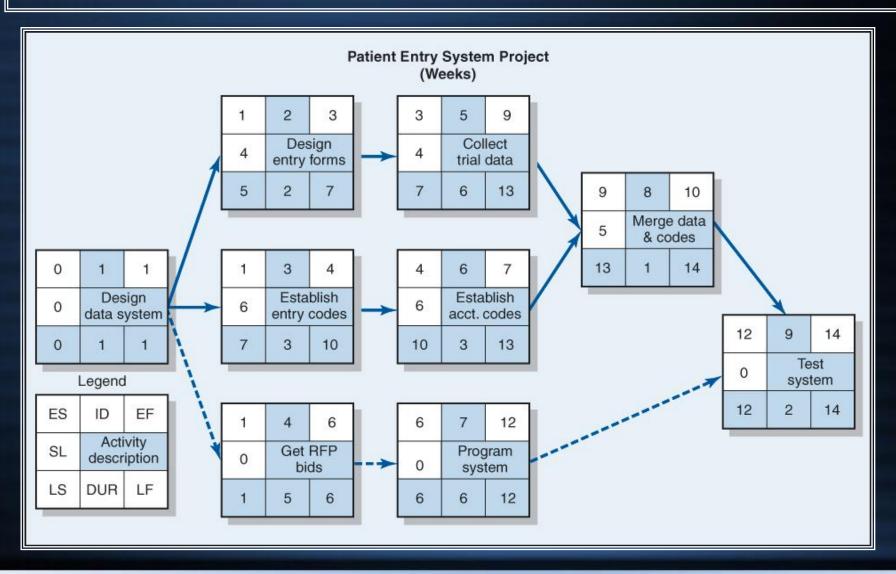
Creating a Time-Phased Budget (cont'd)

		Work	•	Time-Phase or cost only	ed Budget			
Work Package	Description _	Softwar	<u>e</u>		Page	1	of _	1
Work Package	ID 1.1.3.2.4	.1 and 1.1.	3.2.4.2		Projec	t	PC Proto	ype
Deliverable	Circui	t board			Date _	3/2	4/xx	
Responsible or	ganization u	nit_ <i>Softwa</i>	re		Estima	ator	GG	
Work Package	Duration	_4we	eks		Total la	abor cost _	\$180	
		Time	-Phased	Labor Bud	lget (\$000)			
Work	Basauraa	Labor		Wo	ork Periods	Weeks	6	
Package	Resource	rate	1	2	3	4	5	Total
Code 1.1.3.2.4.1	Program'rs	\$2,000/ week	\$20	\$15	\$15			\$50
Integration 1.1.3.2.4.2	System/ program'rs	\$2,500/ week			\$60	\$70		\$130

\$15

\$75

\$70


\$20

Total

FIGURE 8.14

\$180

Creating a Time-Phased Budget (cont'd)

Creating a Time-Phased Budget (cont'd)

							(0)				(I-						
				_				000)			leek						
ID	Dur.		Budget 0		1	2	3 4	4	5	6 7	7 8	3 (9 1	0 1	1 1	2 1	3 14
1	1	Design data system	5	5													
2	2	Design entry forms	4		2	2											
3	3	Establish entry codes	6		2	2	2										
4	5	Get RFP bids	3		2				1								
5	6	Collect trial data	6				1	1	1	1	1	1					
6	3	Establish account codes	5					2	2	1							
7	6	Program system	12					6		2		4	2		4		
8	1	Merge data & codes	4										4				
9	2	Test system	7													4	3
		Week total	52	5	6	4	3	3	4	4	1	5	6	0	4	4	3
		Cumulative		5	11	15	18	21	25	29	30	35	41	41	45	49	52
		Cumulative Baseline Budget (PV)	40 - 30 - 20 - 10 -														
			0 [-	1	2	3 4	4	5	6 7	7 8	3 9	91	0 1	11 1	2 1	3 1

Monthly Cash Flow Statement

33		-			22000	1000220	
	January	February	March	April	May	June	July
CEBOO Project							
Hardware							
Hardware specifications	\$11,480.00	\$24,840.00	\$3,360.00				
Hardware design			\$23,120.00	\$29,920.00	\$14,960.00		
Hardware documentation					\$14,080.00	\$24,320.00	
Prototypes							
Order GXs						6	
Assemble preproduction models							
Operating system							
Kernel specifications	\$5,320.00	\$9,880.00					
Drivers	0						
OC drivers				\$3,360.00	\$12,320.00	\$11,760.00	\$12,880.00
Serial VO drivers							
Memory management							
Operating system documentation		\$10,240.00	\$21,760.00				
Network interface							
Utilities							
Utilities specifications				\$8,400.00			
Routine utilities				\$5,760.00	\$21,120.00	\$20,160.00	\$10,560.00
Complex utilities							
Utilities documentation				\$7,680.00	\$17,920.00		
Shell						-	
System integration							
Architectural decisions	\$20,400.00						
Integration first phase							
System H/S test							
Project documentation							
Integration acceptance test							
Total	\$37,200.00	\$44,960.00	\$48,240.00	\$55,120.00	\$80,400.00	\$56,240.00	\$23,440.00

Resource Usage Table

		600 100 100 100				
	12/30/07	1/6/08	1/13/08	1/20/08	1/27/08	2/03/08
I. Suzuki Hardware specifications Hardware design Hardware documentation Operating system documentation Utilities documentation Architectural decisions	24 hrs 24 hrs	40 hrs 40 hrs	40 hrs 40 hrs	40 hrs 24 hrs 16 hrs	40 hrs 40 hrs	40 hrs 40 hrs
J. Lopez Hardware specifications Hardware design Prototypes Kernel specifications Utilities specifications Architectural decisions	24 hrs 24 hrs	40 hrs 40 hrs	40 hrs 40 hrs	40 hrs 12 hrs 12 hrs 16 hrs	40 hrs 20 hrs 20 hrs	40 hrs 20 hrs 20 hrs
Integration first phase J.J. Putz				24 hrs	40 hrs	40 hrs
Hardware documentation Kernel specifications Operating system documentation Utilities documentetion Project documentation				24 hrs	40 hrs	40 hrs
R. Sexon Hardware specifications Prototypes Assemble preproduction models OC drivers Complex utilities Integration first phase System H/S test Integration acceptance test				24 hrs 24 hrs	40 hrs 40 hrs	40 hrs 40 hrs

Key Terms

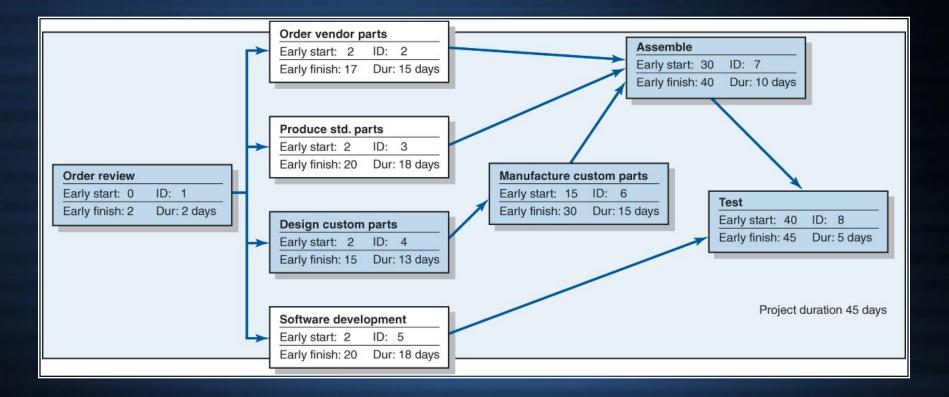
Heuristic Leveling/smoothing Planned value (PV) Resource-constrained projects Resource profile Splitting Time-constrained projects Time-phased baseline

Critical Chain Project Management (CCPM)

- Critical Chain Project Management is a method of planning and managing projects that puts more emphasis on the resources required to execute project tasks.
- This is in contrast to the more traditional Critical Path and PERT methods, which emphasize task order and rigid scheduling.

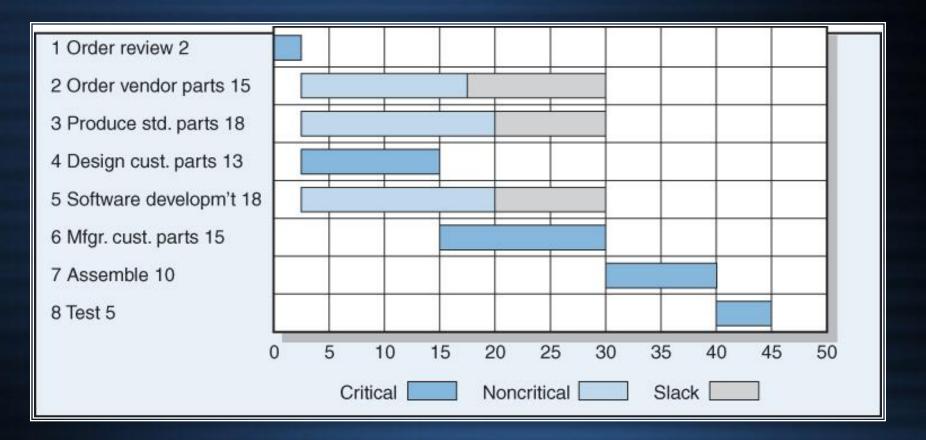
Why, if there is a tendency to overestimate activity durations and add safety to a project, do so many projects come in behind schedule?

- Parkinson's Law
- Self-protection
- Dropped baton
- Excessive multi-tasking
- Resource bottlenecks
- Student syndrome (procrastination)

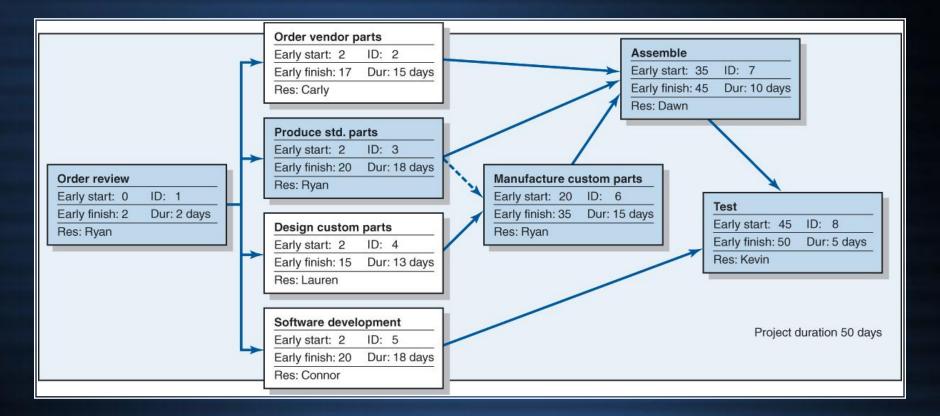

CCPM in Action

50/50 Estimates

Three Kinds of Buffers


- Project at the end of project to absorb delays
- Feeder where noncritical paths merge with the critical chain to protect critical chain from delays
- Resource where scarce resources are need to insure they are available

Air Control Project w/o Resources


FIGURE A8.1A

Air Control Project: Gantt Chart w/o Resources

FIGURE A8.1B

Air-Control Project w/ Limited Resources

FIGURE A8.2A

Air Control Project: Gantt Chart w/ Limited Resources

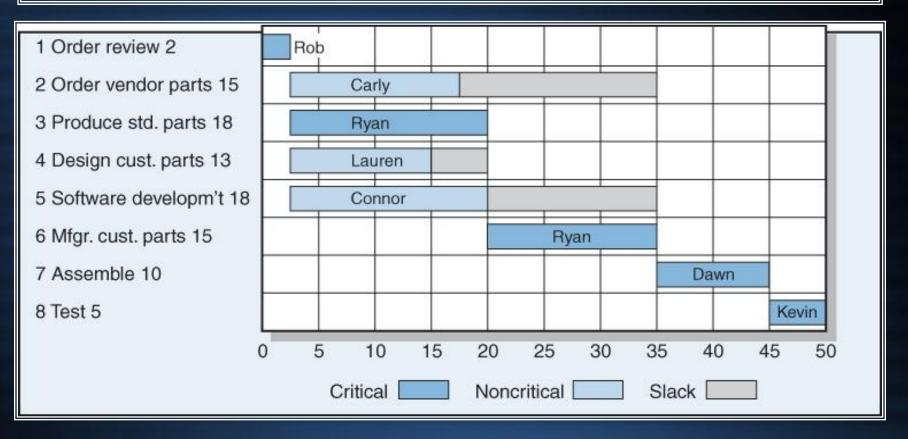
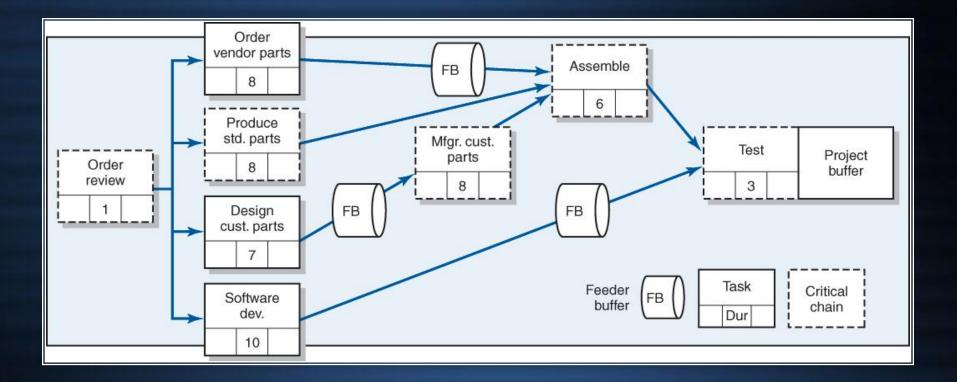



FIGURE A8.2B

Air Control Project: CCPM Network

Air Control Project: CCPM Gantt Chart

Activity	Dur	LS	LF	Buffer
1. Order review	1	0	1	0
2. Order vendor parts	8	7	15	3
3. Produce std. parts	8	1	9	0
4. Design cust. parts	7	1	8	3
5. Software dev.	10	11	21	3
6. Mfgr. cust. parts	8	11	19	0
7. Assemble	6	18	24	0
8. Test	3	24	27	12
		3		0 5 10 15 20 25 30 35 40
				Activity Buffer

CCPM: Project Buffer Management

Region III	Region II	Region I
ок	Watch & Plan	Act
)% I buffer e left		0% No buffer time left

Critical Chain Project Management (CCPM)

- Critical Chain is the sequence of both precedence- and resource-dependent activities that prevents a project from being completed in a shorter time, given finite resources.
- If resources are always available in unlimited quantities, then a project's critical chain is identical to its critical path.