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NP-completeness 

Do your best then. 



Optimization Problem 

An optimization problem Π is characterized by 3 components : 
 

 Instances D: a set of input instances. 
 

 Solutions S(I): the set of all feasible solutions for an instance I∈D.  
 Value f: a function which assigns a value to each solutions.   

 
A minimization problem is: given an instance, find a solution such that 
its value is minimum among all feasible solution. 
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Graph Coloring Problem   

n vertices: v1     v2   v3    …  vn 

Colors: C1    C2  …   Ck 

Optimization: Minimum number of colors required to color 
    the vertices so that adjacent vertices must be 
    of different color 
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Coping With NP-Hardness 

Brute-force algorithms. 
 

§  Develop clever enumeration strategies. 
§  Guaranteed to find optimal solution. 
§  No guarantees on running time. 

Heuristics. 
 

Develop intuitive algorithms. 
Guaranteed to run in polynomial time. 
No guarantees on quality of solution. 
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Coping With NP-Hardness 

Approximation algorithms. 
 
Guaranteed to run in polynomial time. 
Guaranteed to find "high quality" solution.  

How do we measure “high quality” solution? 

Is solution ≅  Optimum solution ± some constant? 
(1 ± some small constant)*Optimum solution? 

Obstacle: need to prove a solution’s value is close to 
optimum, without even knowing what optimum value is! 
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Performance guarantees  

In case  
  |Optimum solution - A(n)| <= Some constant 

                 then  A(n) is an absolute approximation algorithms 

Suppose A(n) is the solution of a non optimal algorithm 
for problem P of size n. 

Performance ratio  
  RA(n) =A(n)/OPT(n)    in case P is a minimization problem 
      = OPT(n)/A(n)     in case P is a maximization problem 

RA(n) may be  Constant, log n or any other function 
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Absolute Approximation Algorithms 
Problem:  Coloring of the vertices of a graph such that no 

   two adjacent vertices have the same  color 
Goal:   minimize the number of color used. 
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Absolute Approximation Algorithms 
Problem:  Coloring of the vertices of a graph such that no 

   two adjacent vertices have the same  color 
Goal:   minimize the number of color used 

Decision version: Given some integer k, 
 is it possible to color the vertices with k colors 
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Absolute Approximation Algorithms 
Problem:  Coloring of the vertices of a graph such that no 

   two adjacent vertices have the same  color 
Goal:   minimize the number of color used 
Decision version of this problem is NP-hard even if the 

graph is planar  
    The problem of deciding whether a planar graph 
   is 3-colorable is NP-complete 

It is well-known that any planar graph is 5-colorable 
⇒   The performance of the approximation algorithm A is 

  such that |A(G)-OPT(G)| ≤ 2 
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Vertex Cover  

Vertex cover: a subset of vertices which “covers” every edge. 
An edge is covered if one of its endpoint is chosen. 

The Minimum Vertex Cover Problem: 
Find a vertex cover with minimum number of vertices. 
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Vertex Cover  

Vertex cover: a subset of vertices which “covers” every edge. 
An edge is covered if one of its endpoint is chosen. 

The Minimum Vertex Cover Problem: 
Find a vertex cover with minimum number of vertices. 
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Approximation Algorithms   

Constant factor approximation algorithms:  
 
SOL <= c.OPT for some constant c. 

Key: provably close to optimal. 

Let OPT be the value of an optimal solution, 
and let SOL be the value of the solution that our algorithm returned. 
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Vertex Cover: Greedy Algorithm 1   

Idea: Keep finding a vertex which covers the maximum number of edges. 

G0 

d1 

d2 

G1 

d3 G2 

d4 

G3 
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Vertex Cover: Greedy Algorithm 1   

Idea: Keep finding a vertex which covers the maximum number of edges. 

Greedy Algorithm 1: 
1.  Find a vertex v with maximum degree. 

2.  Add v to the solution and remove v and all its incident edges from the graph. 

3.  Repeat until all the edges are covered. 

How good is this algorithm? 
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Vertex Cover: Greedy Algorithm 1   

OPT = 6, all red vertices. 

SOL = 11, if we are unlucky in breaking ties. 
First we might choose all the green vertices. 
Then we might choose all the blue vertices. 
And then we might choose all the orange vertices. 
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Vertex Cover: Greedy Algorithm 1   

k! vertices of degree k 

Generalizing 
the example! 

k!/k vertices of degree k k!/(k-1) vertices of degree k-1 k! vertices of degree 1 

OPT = k!, all top vertices. 

SOL = k! (1/k + 1/(k-1) + 1/(k-2) + … + 1) ≈ k! log(k), all bottom vertices. 

Not a constant factor  
approximation algorithm! 



18 

Vertex Cover: Greedy Algorithm 1   

Is the output from this greedy algorithm give an approximation of optimal solution? 

From last example we can claim that if it is an approximation 
algorithm then approximation factor is not better than O(log n) 



Vertex Cover: Greedy Algorithm 1   

Consider   Gi  : remaining graph after the choice  
     of ith vertex in the solution 
      di  : maximum degree of any node in Gi-1  
      vi  : vertex in Gi-1 with maximum degree 

Let C* denote the optimal vertex cover of G which contain m number of vertices 
 |Gi-1| denote the number of edges in the graph Gi-1. 



20 

Vertex Cover: Greedy Algorithm 1   

Σv∈c* deg(v) ≥ |G|  and |C*|=m 
 
Hence, 

 

  Max v∈c* (deg(v) )≥   |G| /m           

    
 
That is,  d1 ≥ |G0| /m 
 

 Similarly,    d2 ≥ |G1| /m,  … 
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Vertex Cover: Greedy Algorithm 1   

Then 

 Σm
i=1 di  ≥  Σm

i=1 |Gi-1| /m              As Σv∈c* degGi-1
(v) ≥ |Gi-1|  

                                                                                                     

    ≥  Σm
i=1 |Gm| /m  

 
     =|Gm|  

 

      ≥  |G| -Σm
i=1 di 

 

So,  Σm
i=1 di ≥  |G| /2 
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Vertex Cover: Greedy Algorithm 1   

In m th iterations, algorithm removes at least half the edges of G 

Thus 
     after m.log |G| iterations 

     all the edges of G have been removed   

Algorithm 1 computes a vertex cover of size   O(optimum. log n) 

Greedy Algorithm 1 is an O(log n)  
approximation algorithm 
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Vertex Cover: Algorithm 2   

Greedy approach does not always lead to the best approximation algorithm 



24 

Vertex Cover: Algorithm 2   

a

b

c d

e

Initially C = φ	

Consider an edge (a,b) 
Put “a” and “b” in C, i.e., C = {a,b}  
 
Remove vertices “a” and “b” frpm the graph 

c d

e
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Vertex Cover: Algorithm 2   

C = φ	

while G has atleast one edge 

    {    (u,v) any edge of G 
        G = G \ {u, v} 
        C = C ∪ {u, v}    } 

return C 
  

How good is this algorithm? 
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Vertex Cover: Algorithm 2   

G 

u 

v G1 

u 

v 

G2 
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Vertex Cover: Algorithm 2   

For edge (u, v), at least one of the vertex u or v must be in any 
optimal cover  
 
IT FOLLOWS IT IS A 2 APPROXIMATION ALGORITHM 

Conclusion: Greedy approach does not always lead to 
the best approximation algorithm 
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Traveling Salesman   

Traveling salesman problem  

asks for the shortest Hamiltonian cycle in a weighted undirected graph.   

 

Traveling salesman problem is NP hard 
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Traveling Salesman : A Special Case  

Consider the following algorithm : 
 
Compute minimum spanning tree T of the weighted input graph 
Depth first traversal of T 
Numbering the vertices in order that we first encounter them 
Return the cycle obtained by visiting the vertices according to this numbering  

Edge lengths satisfy triangular inequality 
  l(u,v) ≤ l(u,w) + l(w,v)  

This is true for geometric graph 
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Traveling Salesman : A Special Case  

Demonstration 

Set of points distributed in 2D 
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Traveling Salesman : A Special Case  

Demonstration 

Minimum spanning tree 
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Traveling Salesman : A Special Case  

Demonstration 

Depth first traversal 

Consider this as 
root 
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Traveling Salesman : A Special Case  

Demonstration 

Depth first traversal and 
numbering of vertices 

1 

2 

4 3 

5 

6 7 
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Traveling Salesman : A Special Case  

Demonstration 

Traveling salesman tour 

1 

2 

4 3 

5 

6 7 
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Traveling Salesman : A Special Case  

Demonstration 

Traveling salesman tour 
with cost 2.MST 

1 

2 

4 

3 

5 

6 7 
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Traveling Salesman : A Special Case  

Demonstration 

Traveling salesman tour 
with reduced cost ≤ 2.MST 

1 

2 

4 

3 

5 

6 7 
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Traveling Salesman : A Special Case 

Output quality : 
 Cost of the tour using this algorithm 

 

	
≤ 2* cost of minimum spanning tree 
 

 ≤  2* cost of optimal solution 
  

   

Conclusion: The algorithm outputs 2 approximation of the minimum 
    traveling salesman problem  
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Traveling Salesman : A Improved heuristic  

Locate odd degree vertices in minimum spanning tree 

Number of odd degree vertices is even 

1 

2 

4 3 

5 

6 

7 

Christofides 1976 
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Traveling Salesman : A Improved heuristic  

Compute a minimum cost perfect matching of these odd degree vertices 

Perfect matching of odd degree vertices  

1 

2 

5 

7 
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Traveling Salesman : A Improved heuristic  

Merge the perfect matching with minimum spanning tree allowing 
multi edges 

Merging the perfect edges with MST 

1 

2 

4 3 

5 

6 

7 
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Traveling Salesman : A Improved heuristic  

Observations: 
 
In this new multigraph, every vertex has even 
degree 
 
Thus it contains an Eulerian circuit 
 
In O(n) time we can compute a closed walk  

 that uses every edge exactly once 

1 

2 

4 3 

5 

6 

7 
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Traveling Salesman : A Improved heuristic  

Observations: 
 
Cost of the tour = 

 cost of minimum spanning tree + 
 cost of minimum odd vertex matching   

 
Cost of minimum odd vertex matching ≤ 

   ½ * optimal traveling salesman 
tour 

1 

2 

4 3 

5 

6 

7 

Result: Given a weighted graph that obeys triangular inequality, the    
 Christofides heuristic computes a (3/2)-approximation of 
  the minimum  traveling salesman tour  
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Traveling Salesman   

Traveling salesman problem is NP hard even if all the edge lengths are 1 or 2  

Due to polynomial time reduction from Hamiltonian cycle to this type 

 of Traveling salesman problem 

G has a Hamiltonian cycle then  
there is an Hamiltonian cycle in Kn whose length is exactly n 

Consider G be an arbitrary undirected graph with n vertices 
 

Length function  l(e) =  {                   for  Kn  
1    if e is an edge in G 
2  otherwise 
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Traveling Salesman   

Thus if we can approximate  

 the shortest traveling salesman tour within a factor of 2 in polynomial time 

 we would have a polynomial time algorithm for the  Hamiltonian cycle  problem 

G has a Hamiltonian cycle then  
 there is an Hamiltonian cycle in Kn whose length is exactly n or 

  has length at least 2n 

We can replace the values in length function by any values we like 
 

Length function  l(e) =  {                     
1    if e is an edge in G 
n  otherwise 
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Traveling Salesman   

For any function f(n) that can be computed in polynomial in n,  
 there is no polynomial time f(n) approx fo TSP on general  
 weighted graph unless P=NP.  

We have the following negative results   



46 

Bin Packing   

n items: 
s1     s2   s3    s4     s5  …  sn 

Bins: 

B1           B2  …   Bk 

   1 

Optimization: Pack items  in minimum number of bins 
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Bin Packing: First fit   

5 items: 
s1     s2   s3    s4     s5  

Bins: 

B1           B2    B3 
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Bin Packing: First fit   

5 items: 
    s2   s3    s4     s5 

  

Bins: 

B1           B2    B3 

s1 
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Bin Packing: First fit   

5 items: 
  s1     s2   s3    s4     s5   

Bins: 

B1           B2    B3 

s1 
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Bin Packing: First fit   

5 items: 
        s3    s4     s5   

Bins: 

B1           B2    B3 

s1 
    s2 
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Bin Packing: First fit   

5 items: 
          s4     s5   

Bins: 

B1           B2    B3 

s1 
    s2   s3 
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Bin Packing: First fit   

5 items: 

s4 
Bins: 

B1           B2    B3 

s1     s2   s3       s5 
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Bin Packing: First fit   

Observation: at most one bin is more than half empty 

Conclusion: Approximation factor less than equal to 2 

 How good is this algorithm? 

Claim: The number of bins < ⎡2* Σ size of item s 
i i ⎤	
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Bin Packing: First fit   

Is approximation factor less than 5/3 ? 

Consider 
  6m items of size 1/7  + 0.0001 
  6m items of size 1/3  + 0.0001 
  6m items of size 1/2  + 0.0001 

 
First fit will distribute the items as  

  m bins with 6 items of size 1/7 +  0.0001 each 
  3m bins with 2 items of size 1/3 + 0.0001 each 
  6m bins with 1 items of size 1/2 + 0.0001 each  } 10m 

It can be placed in 6m bins  
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Bin Packing:  

Any better algorithm than first fit? 

May be best fit, first fit decreasing, best fit decreasing, ...  

How much good are they? 

Is any algorithm having a guarantee of 3/2 -ε approximation? 

If such an algorithm exists 
 It will report optimal solution in case optimal   
 solution is one or two.   
      IS  IT? 
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Bin Packing:  

Consider the partitioning problem: 
  

decide whether there exist a partition into two sets   
 each adding up to ½∑ai 

n nonnegative numbers a1, a2, a3, ..., an 

For example, 
 11 non-negative integers 

    6,9,15,12,8,16, 12, 19, 23, 12, 22 
  Total  154 

decide whether there exist a partition into two sets   
 each adding up to 77 
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Bin Packing:  

Any 3/2 -ε approximation algorithm solve this NP-hard 
problem!!! 

Can be mapped into bin packing problem with bin size  ½∑a 
i 

Consider the partitioning problem: 
  

decide whether there exist a partition into two sets   
 each adding up to ½∑ai 

n nonnegative numbers a1, a2, a3, ..., an 
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Idea:   

If we allow to the high degree polynomial complexity of our  

approximation algorithm,  

can we get better approximation bound? 

Sometimes it may be possible with polynomial time complexity 
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Thank You 
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Knapsack Problem   

Items:      U={u1, u2, u3, ..., un} and ui has size si with profit pi 
Capacity of knapsack:  B 

Solution:       Choose subset U' of U s.t ∑ ui ∈U' si ≤  B 

Objective:        maximize the net profit ∑ ui ∈U' pi 
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Knapsack Problem  

Here OPT(I) >= Approx(I) 

Looking for (1- ε )OPT(I) <= Approx(I) 

In case ε=0, then our approx algorithm is optimum 

But complexity? 

Let us consider ε=0.0001  then what wil be the complexity? 

What if we vary ε? 
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Knapsack Problem: Greedy Algorithm   

Profit density : pi /si 

1. Sort items in non-increasing order of their profit densities 

2. U'=∅	


3. for i = 1, 2, ..., n  

 If ∑ uj ∈U' sj ≤  B – si   then U' = U' + ui  

But it does not do well 



63 

Knapsack Problem: polynomial  
       approximation scheme   

Choose a subset S of at most k elements 

Run greedy algorithm using the remaining items 

Repeat the process for all possible choice of k-set S 

Complexity :  O(nk+1  log n) 
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Knapsack Problem: polynomial  
       approximation scheme   

Items:  U={u1, u2, u3, ..., un}  
 
 
Choose one permutation 
 

Consider size of bin B = original size -∑ ui ∈U' si  
 
Run greedy algorithm with this bin size and with remaining items. 

 All possible permutation of size k or 
small 
{u'1, u'2, u'3, ..., u'k}  

 {u'1, u'2, u'3, ..., u'k}  
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Knapsack Problem: polynomial  
       approximation scheme   

Let one of the optimal solution is   X={u1, u2, u3, ..., ur }  

 How good is this algorithm? 

If r<=k? 

 Suppose r>k 
Let Optimal solution = {u'1, u'2, u'3, ..., u'k} +{u'k+1, u'k+2,  ..., u'r}   

Execute greedy algorithm 

Items with larger 
profits in X 
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Knapsack Problem: polynomial  
       approximation scheme   

Optimal solution =  
   {u'1, u'2, ..., u'k} +{u'k+1, u'k+2,  ..., u'l  } + {u'l+1, u'l+2,  ..., u'r } 

Items with larger 
profits in X 
As initial choice  
Of k-set 

Items selected from 
remaining that 
matches with X 

Items not selected by 
greedy algorithm 

So, 
approx solution =  

   {u'1, u'2, ..., u'k} +{u'k+1, u'k+2,  ..., u'l  } + {v1, v2,  ..., vt } 
Items with larger 
profits in X 

Items selected from 
remaining that 
matches with X 

Items selected but not 
matching with X 
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Knapsack Problem: polynomial  
       approximation scheme   

approx solution =  
   u'1, u'2, ..., u’k,u'k+1, v1,.. u'k+2,  ..., v7,…u'l , … vm’ , vm’ +1, ..., vt  

Not in optimum X set 
In optimum set X 

 u'1, u'2, ..., u’k,u'k+1, v1,.. u'k+2,  ..., v7,…u'l , … vm’ ,     vm’ +1, ..., vt  
   

                             u’l+1 is in this place, 
        but the algorithm cannot select it                          

 



68 

Knapsack Problem: polynomial  
       approximation scheme   

approx solution =  
 {u'1, u'2, ..., u'k} +{u'k+1, u'k+2,  ..., u'l  } + {v1, v2,  ..., vm’ } + {vm’+1,..., vt}  

Here each of  these 
Items has profit 
density at least pl+1/sl+1 

Profit in approximation solution  Σi=1
l  profit(u'i )+ Σi=1

m’  profit(vi ) 

Here total size is less 
than sl+1 
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Knapsack Problem: polynomial  
       approximation scheme   

Profit in approximation solution≥  
                       Σi=1

l  profit(u'i )+ pl+1/sl+1Σi=1
m’  size(vi ) 

Optimal solution=    Σi=1
l  profit(u'i )+ Σi=l+1

r  profit(u'i ) 
 

   ≤ profit of approximation sol - pl+1/sl+1Σi=1
m’  size(vi ) 

                               +(Β-Σι=1
l  size(u'i ))pl+1/sl+1 

                        ≤ profit of approximation sol  

        +(B-Σi=1
l  size(u'i )-Σi=1

m’  size(vi ))pl+1/sl+1 
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Knapsack Problem: polynomial  
       approximation scheme   

Optimal solution   
                          ≤ profit of approximation solution         +  pl+1 
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Knapsack Problem: polynomial  
       approximation scheme   

Optimal solution - profit of approximation sol  
    ≤  pl+1 ≤ profit of approximation sol / k 
  

Optimal solution - profit of approximation sol  
    ≤ Optimal sol / k 

 
(1-1/k)Optimal Solution ≤ profit of approximation sol 
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K-center Clustering 

Given :   a set P = {p1, p2, ..., pn} of n points in the plane 
   an integer k  

 
Objective:  find a collection of k circles that collectively enclose all the  points 
 
such that  radius of the largest circle is as small as possible 

K-center Problem is NP hard for k ≥ 2 

It is NP hard even to approximate within a factor of roughly 1.8  



73 

K-center Clustering : A Greedy Strategy 

Choose the k center points one at a time 
 
Starting with an arbitrary input point as the first center 

Teofilo Gonzalez  1985 
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K-center Clustering : A Greedy Strategy 

In each iteration,  
  choose the input point that is farthest from  
  any earlier center point to be the next center point 

Teofilo Gonzalez  1985 

farthest 
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K-center Clustering : A Greedy Strategy 

In each iteration,  
  choose the input point that is farthest from  
  any earlier center point to be the next center point 

Teofilo Gonzalez  1985 

farthest 
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K-center Clustering : A Greedy Strategy 

In each iteration,  
  choose the input point that is farthest from  
  any earlier center point to be the next center point 

Teofilo Gonzalez  1985 
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K-center Clustering : A Greedy Strategy 

Performance 

Teofilo Gonzalez  1985 

Let 
 r* : optimal k-center clustering radius 
 r  : clustering radius obtained by this algorithm for k+1 center 

If r > 2r* then  
 any ball of radius r* contains at most one of these k+1 center points  

Conclusion : Algorithm computes a 2-approximation to the optimal  
   k-center clustering 
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Lower bound and Approximation Algorithm 

The key of designing a polytime approximation algorithm is  
to obtain a good (lower or upper) bound on the optimal solution. 

For NP-complete problem, we can’t compute an optimal solution in polytime. 

The general strategy (for a minimization problem) is: 

lowerbound OPT SOL 

SOL ≤ c · lowerbound    ð   SOL ≤ c · OPT 
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Linear Programming and Approximation Algorithm 

lowerbound OPT SOL 

Linear programming: a general method to compute a lowerbound in polytime. 

LP 

To computer an approximate solution, 
we need to return an (integral) solution  

close to an optimal LP (fractional) solution. 
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An Example: Vertex Cover 

Integrality gap: = 
Optimal integer solution. 

Optimal fractional solution. 
Over all instances. 

In vertex cover, there are instances where this gap is almost 2. 

max 

1 

1 

1 1 

0 0.5 

0.5 

0.5 0.5 

0.5 
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Linear Programming Relaxation for Vertex Cover 

Theorem: For the vertex cover problem, 

            every vertex (or basic) solution of the LP 

            is half-integral, i.e. x(v) = {0, ½, 1} 
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Linear Programming Relaxation for Set Cover 

for each element e. 

for each subset S. 

How to “round” the fractional solutions? 

Idea: View the fractional values as probabilities, and do it randomly! 
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sets 

elements 

Algorithm 

First solve the linear program to obtain the fractional values x*. 

0.3 0.6 0.2 0.7 0.4 

Then flip a (biased) coin for each set with probability x*(S) being “head”. 

Add all the “head” vertices to the set cover. Repeat log(n) rounds. 
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Performance 

Theorem: The randomized rounding gives an O(log(n))-approximation. 

Claim 1: The sets picked in each round have an expected cost of at most LP. 

Claim 2: Each element is covered with high probability after O(log(n)) rounds. 

So, after O(log(n)) rounds, the expected total cost is at most O(log(n)) LP, 
and every element is covered with high probability, and hence the theorem. 

Remark: It is NP-hard to have a better than O(log(n))-approximation! 
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Cost 

Claim 1: The sets picked in each round have an expected cost of at most LP. 

Q.E.D. 
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Feasibility 

First consider the probability that an element e is covered after one round. 

Claim 2: Each element is covered with high probability after O(log(n)) rounds. 

Let say e is covered by S1, …, Sk which have values x1, …, xk. 

By the linear program, x1 + x2 + … + xk >= 1. 

Pr[e is not covered in one round] = (1 – x1)(1 – x2)…(1 – xk). 

This is maximized when x1=x2=…=xk=1/k, why? 

Pr[e is not covered in one round] <= (1 – 1/k)k 
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Feasibility 

First consider the probability that an element e is covered after one round. 

Claim 2: Each element is covered with high probability after O(log(n)) rounds. 

Pr[e is not covered in one round] <= (1 – 1/k)k 

So, 

What about after O(log(n)) rounds? 
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Feasibility 

Claim 2: Each element is covered with high probability after O(log(n)) rounds. 

So, 

So, 
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Remark 

Let say the sets picked have an expected total cost of at most clog(n) LP. 

Claim: The total cost is greater than 4clog(n) LP with probability at most ¼. 

This follows from the Markov inequality, which says that: 

Proof of Markov inequality: 

The claim follows by substituting E[X]=clog(n)LP and  t=4clog(n)LP  
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Wrap Up 

Theorem: The randomized rounding gives an O(log(n))-approximation. 

This is the only known rounding method for set cover. 

Randomized rounding has many other applications. 


