
1

 Approximation

Algorithms

for Graph Related Problems

Sandip Das
Indian Statistical Institute, Kolkata
sandipdas@isical.ac.in

2

NP-completeness

Do your best then.

Optimization Problem

An optimization problem Π is characterized by 3 components :

 Instances D: a set of input instances.

 Solutions S(I): the set of all feasible solutions for an instance I∈D.
 Value f: a function which assigns a value to each solutions.

A minimization problem is: given an instance, find a solution such that
its value is minimum among all feasible solution.

4

Graph Coloring Problem

n vertices: v1 v2 v3 … vn

Colors: C1 C2 … Ck

Optimization: Minimum number of colors required to color
 the vertices so that adjacent vertices must be
 of different color

5

Coping With NP-Hardness

Brute-force algorithms.

§  Develop clever enumeration strategies.
§  Guaranteed to find optimal solution.
§  No guarantees on running time.

Heuristics.

Develop intuitive algorithms.
Guaranteed to run in polynomial time.
No guarantees on quality of solution.

6

Coping With NP-Hardness

Approximation algorithms.

Guaranteed to run in polynomial time.
Guaranteed to find "high quality" solution.

How do we measure “high quality” solution?

Is solution ≅ Optimum solution ± some constant?
(1 ± some small constant)*Optimum solution?

Obstacle: need to prove a solution’s value is close to
optimum, without even knowing what optimum value is!

7

Performance guarantees

In case
 |Optimum solution - A(n)| <= Some constant

 then A(n) is an absolute approximation algorithms

Suppose A(n) is the solution of a non optimal algorithm
for problem P of size n.

Performance ratio
 RA(n) =A(n)/OPT(n) in case P is a minimization problem
 = OPT(n)/A(n) in case P is a maximization problem

RA(n) may be Constant, log n or any other function

8

Absolute Approximation Algorithms
Problem: Coloring of the vertices of a graph such that no

 two adjacent vertices have the same color
Goal: minimize the number of color used.

9

Absolute Approximation Algorithms
Problem: Coloring of the vertices of a graph such that no

 two adjacent vertices have the same color
Goal: minimize the number of color used

Decision version: Given some integer k,
 is it possible to color the vertices with k colors

10

Absolute Approximation Algorithms
Problem: Coloring of the vertices of a graph such that no

 two adjacent vertices have the same color
Goal: minimize the number of color used
Decision version of this problem is NP-hard even if the

graph is planar
 The problem of deciding whether a planar graph
 is 3-colorable is NP-complete

It is well-known that any planar graph is 5-colorable
⇒ The performance of the approximation algorithm A is

 such that |A(G)-OPT(G)| ≤ 2

11

Vertex Cover

Vertex cover: a subset of vertices which “covers” every edge.
An edge is covered if one of its endpoint is chosen.

The Minimum Vertex Cover Problem:
Find a vertex cover with minimum number of vertices.

12

Vertex Cover

Vertex cover: a subset of vertices which “covers” every edge.
An edge is covered if one of its endpoint is chosen.

The Minimum Vertex Cover Problem:
Find a vertex cover with minimum number of vertices.

13

Approximation Algorithms

Constant factor approximation algorithms:

SOL <= c.OPT for some constant c.

Key: provably close to optimal.

Let OPT be the value of an optimal solution,
and let SOL be the value of the solution that our algorithm returned.

14

Vertex Cover: Greedy Algorithm 1

Idea: Keep finding a vertex which covers the maximum number of edges.

G0

d1

d2

G1

d3 G2

d4

G3

15

Vertex Cover: Greedy Algorithm 1

Idea: Keep finding a vertex which covers the maximum number of edges.

Greedy Algorithm 1:
1.  Find a vertex v with maximum degree.

2.  Add v to the solution and remove v and all its incident edges from the graph.

3.  Repeat until all the edges are covered.

How good is this algorithm?

16

Vertex Cover: Greedy Algorithm 1

OPT = 6, all red vertices.

SOL = 11, if we are unlucky in breaking ties.
First we might choose all the green vertices.
Then we might choose all the blue vertices.
And then we might choose all the orange vertices.

17

Vertex Cover: Greedy Algorithm 1

k! vertices of degree k

Generalizing
the example!

k!/k vertices of degree k k!/(k-1) vertices of degree k-1 k! vertices of degree 1

OPT = k!, all top vertices.

SOL = k! (1/k + 1/(k-1) + 1/(k-2) + … + 1) ≈ k! log(k), all bottom vertices.

Not a constant factor
approximation algorithm!

18

Vertex Cover: Greedy Algorithm 1

Is the output from this greedy algorithm give an approximation of optimal solution?

From last example we can claim that if it is an approximation
algorithm then approximation factor is not better than O(log n)

Vertex Cover: Greedy Algorithm 1

Consider Gi : remaining graph after the choice
 of ith vertex in the solution
 di : maximum degree of any node in Gi-1
 vi : vertex in Gi-1 with maximum degree

Let C* denote the optimal vertex cover of G which contain m number of vertices
 |Gi-1| denote the number of edges in the graph Gi-1.

20

Vertex Cover: Greedy Algorithm 1

Σv∈c* deg(v) ≥ |G| and |C*|=m

Hence,

 Max v∈c* (deg(v))≥ |G| /m

That is, d1 ≥ |G0| /m

 Similarly, d2 ≥ |G1| /m, …

21

Vertex Cover: Greedy Algorithm 1

Then

 Σm
i=1 di ≥ Σm

i=1 |Gi-1| /m As Σv∈c* degGi-1
(v) ≥ |Gi-1|

 ≥ Σm
i=1 |Gm| /m

 =|Gm|

 ≥ |G| -Σm
i=1 di

So, Σm
i=1 di ≥ |G| /2

22

Vertex Cover: Greedy Algorithm 1

In m th iterations, algorithm removes at least half the edges of G

Thus
 after m.log |G| iterations

 all the edges of G have been removed

Algorithm 1 computes a vertex cover of size O(optimum. log n)

Greedy Algorithm 1 is an O(log n)
approximation algorithm

23

Vertex Cover: Algorithm 2

Greedy approach does not always lead to the best approximation algorithm

24

Vertex Cover: Algorithm 2

a

b

c d

e

Initially C = φ	

Consider an edge (a,b)
Put “a” and “b” in C, i.e., C = {a,b}

Remove vertices “a” and “b” frpm the graph

c d

e

25

Vertex Cover: Algorithm 2

C = φ	

while G has atleast one edge

 { (u,v) any edge of G
 G = G \ {u, v}
 C = C ∪ {u, v} }

return C

How good is this algorithm?

26

Vertex Cover: Algorithm 2

G

u

v G1

u

v

G2

27

Vertex Cover: Algorithm 2

For edge (u, v), at least one of the vertex u or v must be in any
optimal cover

IT FOLLOWS IT IS A 2 APPROXIMATION ALGORITHM

Conclusion: Greedy approach does not always lead to
the best approximation algorithm

28

Traveling Salesman

Traveling salesman problem

asks for the shortest Hamiltonian cycle in a weighted undirected graph.

Traveling salesman problem is NP hard

29

Traveling Salesman : A Special Case

Consider the following algorithm :

Compute minimum spanning tree T of the weighted input graph
Depth first traversal of T
Numbering the vertices in order that we first encounter them
Return the cycle obtained by visiting the vertices according to this numbering

Edge lengths satisfy triangular inequality
 l(u,v) ≤ l(u,w) + l(w,v)

This is true for geometric graph

30

Traveling Salesman : A Special Case

Demonstration

Set of points distributed in 2D

31

Traveling Salesman : A Special Case

Demonstration

Minimum spanning tree

32

Traveling Salesman : A Special Case

Demonstration

Depth first traversal

Consider this as
root

33

Traveling Salesman : A Special Case

Demonstration

Depth first traversal and
numbering of vertices

1

2

4 3

5

6 7

34

Traveling Salesman : A Special Case

Demonstration

Traveling salesman tour

1

2

4 3

5

6 7

35

Traveling Salesman : A Special Case

Demonstration

Traveling salesman tour
with cost 2.MST

1

2

4

3

5

6 7

36

Traveling Salesman : A Special Case

Demonstration

Traveling salesman tour
with reduced cost ≤ 2.MST

1

2

4

3

5

6 7

37

Traveling Salesman : A Special Case

Output quality :
 Cost of the tour using this algorithm

	
≤ 2* cost of minimum spanning tree

 ≤ 2* cost of optimal solution

Conclusion: The algorithm outputs 2 approximation of the minimum
 traveling salesman problem

38

Traveling Salesman : A Improved heuristic

Locate odd degree vertices in minimum spanning tree

Number of odd degree vertices is even

1

2

4 3

5

6

7

Christofides 1976

39

Traveling Salesman : A Improved heuristic

Compute a minimum cost perfect matching of these odd degree vertices

Perfect matching of odd degree vertices

1

2

5

7

40

Traveling Salesman : A Improved heuristic

Merge the perfect matching with minimum spanning tree allowing
multi edges

Merging the perfect edges with MST

1

2

4 3

5

6

7

41

Traveling Salesman : A Improved heuristic

Observations:

In this new multigraph, every vertex has even
degree

Thus it contains an Eulerian circuit

In O(n) time we can compute a closed walk

 that uses every edge exactly once

1

2

4 3

5

6

7

42

Traveling Salesman : A Improved heuristic

Observations:

Cost of the tour =

 cost of minimum spanning tree +
 cost of minimum odd vertex matching

Cost of minimum odd vertex matching ≤

 ½ * optimal traveling salesman
tour

1

2

4 3

5

6

7

Result: Given a weighted graph that obeys triangular inequality, the
 Christofides heuristic computes a (3/2)-approximation of
 the minimum traveling salesman tour

43

Traveling Salesman

Traveling salesman problem is NP hard even if all the edge lengths are 1 or 2

Due to polynomial time reduction from Hamiltonian cycle to this type

 of Traveling salesman problem

G has a Hamiltonian cycle then
there is an Hamiltonian cycle in Kn whose length is exactly n

Consider G be an arbitrary undirected graph with n vertices

Length function l(e) = { for Kn
1 if e is an edge in G
2 otherwise

44

Traveling Salesman

Thus if we can approximate

 the shortest traveling salesman tour within a factor of 2 in polynomial time

 we would have a polynomial time algorithm for the Hamiltonian cycle problem

G has a Hamiltonian cycle then
 there is an Hamiltonian cycle in Kn whose length is exactly n or

 has length at least 2n

We can replace the values in length function by any values we like

Length function l(e) = {
1 if e is an edge in G
n otherwise

45

Traveling Salesman

For any function f(n) that can be computed in polynomial in n,
 there is no polynomial time f(n) approx fo TSP on general
 weighted graph unless P=NP.

We have the following negative results

46

Bin Packing

n items:
s1 s2 s3 s4 s5 … sn

Bins:

B1 B2 … Bk

 1

Optimization: Pack items in minimum number of bins

47

Bin Packing: First fit

5 items:
s1 s2 s3 s4 s5

Bins:

B1 B2 B3

48

Bin Packing: First fit

5 items:
 s2 s3 s4 s5

Bins:

B1 B2 B3

s1

49

Bin Packing: First fit

5 items:
 s1 s2 s3 s4 s5

Bins:

B1 B2 B3

s1

50

Bin Packing: First fit

5 items:
 s3 s4 s5

Bins:

B1 B2 B3

s1
 s2

51

Bin Packing: First fit

5 items:
 s4 s5

Bins:

B1 B2 B3

s1
 s2 s3

52

Bin Packing: First fit

5 items:

s4
Bins:

B1 B2 B3

s1 s2 s3 s5

53

Bin Packing: First fit

Observation: at most one bin is more than half empty

Conclusion: Approximation factor less than equal to 2

 How good is this algorithm?

Claim: The number of bins < ⎡2* Σ size of item s
i i ⎤	

54

Bin Packing: First fit

Is approximation factor less than 5/3 ?

Consider
 6m items of size 1/7 + 0.0001
 6m items of size 1/3 + 0.0001
 6m items of size 1/2 + 0.0001

First fit will distribute the items as

 m bins with 6 items of size 1/7 + 0.0001 each
 3m bins with 2 items of size 1/3 + 0.0001 each
 6m bins with 1 items of size 1/2 + 0.0001 each } 10m

It can be placed in 6m bins

55

Bin Packing:

Any better algorithm than first fit?

May be best fit, first fit decreasing, best fit decreasing, ...

How much good are they?

Is any algorithm having a guarantee of 3/2 -ε approximation?

If such an algorithm exists
 It will report optimal solution in case optimal
 solution is one or two.
 IS IT?

56

Bin Packing:

Consider the partitioning problem:

decide whether there exist a partition into two sets
 each adding up to ½∑ai

n nonnegative numbers a1, a2, a3, ..., an

For example,
 11 non-negative integers

 6,9,15,12,8,16, 12, 19, 23, 12, 22
 Total 154

decide whether there exist a partition into two sets
 each adding up to 77

57

Bin Packing:

Any 3/2 -ε approximation algorithm solve this NP-hard
problem!!!

Can be mapped into bin packing problem with bin size ½∑a
i

Consider the partitioning problem:

decide whether there exist a partition into two sets
 each adding up to ½∑ai

n nonnegative numbers a1, a2, a3, ..., an

58

Idea:

If we allow to the high degree polynomial complexity of our

approximation algorithm,

can we get better approximation bound?

Sometimes it may be possible with polynomial time complexity

59

Thank You

60

Knapsack Problem

Items: U={u1, u2, u3, ..., un} and ui has size si with profit pi
Capacity of knapsack: B

Solution: Choose subset U' of U s.t ∑ ui ∈U' si ≤ B

Objective: maximize the net profit ∑ ui ∈U' pi

61

Knapsack Problem

Here OPT(I) >= Approx(I)

Looking for (1- ε)OPT(I) <= Approx(I)

In case ε=0, then our approx algorithm is optimum

But complexity?

Let us consider ε=0.0001 then what wil be the complexity?

What if we vary ε?

62

Knapsack Problem: Greedy Algorithm

Profit density : pi /si

1. Sort items in non-increasing order of their profit densities

2. U'=∅	

3. for i = 1, 2, ..., n

 If ∑ uj ∈U' sj ≤ B – si then U' = U' + ui

But it does not do well

63

Knapsack Problem: polynomial
 approximation scheme

Choose a subset S of at most k elements

Run greedy algorithm using the remaining items

Repeat the process for all possible choice of k-set S

Complexity : O(nk+1 log n)

64

Knapsack Problem: polynomial
 approximation scheme

Items: U={u1, u2, u3, ..., un}

Choose one permutation

Consider size of bin B = original size -∑ ui ∈U' si

Run greedy algorithm with this bin size and with remaining items.

 All possible permutation of size k or
small
{u'1, u'2, u'3, ..., u'k}

 {u'1, u'2, u'3, ..., u'k}

65

Knapsack Problem: polynomial
 approximation scheme

Let one of the optimal solution is X={u1, u2, u3, ..., ur }

 How good is this algorithm?

If r<=k?

 Suppose r>k
Let Optimal solution = {u'1, u'2, u'3, ..., u'k} +{u'k+1, u'k+2, ..., u'r}

Execute greedy algorithm

Items with larger
profits in X

66

Knapsack Problem: polynomial
 approximation scheme

Optimal solution =
 {u'1, u'2, ..., u'k} +{u'k+1, u'k+2, ..., u'l } + {u'l+1, u'l+2, ..., u'r }

Items with larger
profits in X
As initial choice
Of k-set

Items selected from
remaining that
matches with X

Items not selected by
greedy algorithm

So,
approx solution =

 {u'1, u'2, ..., u'k} +{u'k+1, u'k+2, ..., u'l } + {v1, v2, ..., vt }
Items with larger
profits in X

Items selected from
remaining that
matches with X

Items selected but not
matching with X

67

Knapsack Problem: polynomial
 approximation scheme

approx solution =
 u'1, u'2, ..., u’k,u'k+1, v1,.. u'k+2, ..., v7,…u'l , … vm’ , vm’ +1, ..., vt

Not in optimum X set
In optimum set X

 u'1, u'2, ..., u’k,u'k+1, v1,.. u'k+2, ..., v7,…u'l , … vm’ , vm’ +1, ..., vt

 u’l+1 is in this place,
 but the algorithm cannot select it

68

Knapsack Problem: polynomial
 approximation scheme

approx solution =
 {u'1, u'2, ..., u'k} +{u'k+1, u'k+2, ..., u'l } + {v1, v2, ..., vm’ } + {vm’+1,..., vt}

Here each of these
Items has profit
density at least pl+1/sl+1

Profit in approximation solution Σi=1
l profit(u'i)+ Σi=1

m’ profit(vi)

Here total size is less
than sl+1

69

Knapsack Problem: polynomial
 approximation scheme

Profit in approximation solution≥
 Σi=1

l profit(u'i)+ pl+1/sl+1Σi=1
m’ size(vi)

Optimal solution= Σi=1
l profit(u'i)+ Σi=l+1

r profit(u'i)

 ≤ profit of approximation sol - pl+1/sl+1Σi=1
m’ size(vi)

 +(Β-Σι=1
l size(u'i))pl+1/sl+1

 ≤ profit of approximation sol

 +(B-Σi=1
l size(u'i)-Σi=1

m’ size(vi))pl+1/sl+1

70

Knapsack Problem: polynomial
 approximation scheme

Optimal solution
 ≤ profit of approximation solution + pl+1

71

Knapsack Problem: polynomial
 approximation scheme

Optimal solution - profit of approximation sol
 ≤ pl+1 ≤ profit of approximation sol / k

Optimal solution - profit of approximation sol
 ≤ Optimal sol / k

(1-1/k)Optimal Solution ≤ profit of approximation sol

72

K-center Clustering

Given : a set P = {p1, p2, ..., pn} of n points in the plane
 an integer k

Objective: find a collection of k circles that collectively enclose all the points

such that radius of the largest circle is as small as possible

K-center Problem is NP hard for k ≥ 2

It is NP hard even to approximate within a factor of roughly 1.8

73

K-center Clustering : A Greedy Strategy

Choose the k center points one at a time

Starting with an arbitrary input point as the first center

Teofilo Gonzalez 1985

74

K-center Clustering : A Greedy Strategy

In each iteration,
 choose the input point that is farthest from
 any earlier center point to be the next center point

Teofilo Gonzalez 1985

farthest

75

K-center Clustering : A Greedy Strategy

In each iteration,
 choose the input point that is farthest from
 any earlier center point to be the next center point

Teofilo Gonzalez 1985

farthest

76

K-center Clustering : A Greedy Strategy

In each iteration,
 choose the input point that is farthest from
 any earlier center point to be the next center point

Teofilo Gonzalez 1985

77

K-center Clustering : A Greedy Strategy

Performance

Teofilo Gonzalez 1985

Let
 r* : optimal k-center clustering radius
 r : clustering radius obtained by this algorithm for k+1 center

If r > 2r* then
 any ball of radius r* contains at most one of these k+1 center points

Conclusion : Algorithm computes a 2-approximation to the optimal
 k-center clustering

78

Lower bound and Approximation Algorithm

The key of designing a polytime approximation algorithm is
to obtain a good (lower or upper) bound on the optimal solution.

For NP-complete problem, we can’t compute an optimal solution in polytime.

The general strategy (for a minimization problem) is:

lowerbound OPT SOL

SOL ≤ c · lowerbound ð SOL ≤ c · OPT

79

Linear Programming and Approximation Algorithm

lowerbound OPT SOL

Linear programming: a general method to compute a lowerbound in polytime.

LP

To computer an approximate solution,
we need to return an (integral) solution

close to an optimal LP (fractional) solution.

80

An Example: Vertex Cover

Integrality gap: =
Optimal integer solution.

Optimal fractional solution.
Over all instances.

In vertex cover, there are instances where this gap is almost 2.

max

1

1

1 1

0 0.5

0.5

0.5 0.5

0.5

81

Linear Programming Relaxation for Vertex Cover

Theorem: For the vertex cover problem,

 every vertex (or basic) solution of the LP

 is half-integral, i.e. x(v) = {0, ½, 1}

82

Linear Programming Relaxation for Set Cover

for each element e.

for each subset S.

How to “round” the fractional solutions?

Idea: View the fractional values as probabilities, and do it randomly!

83

sets

elements

Algorithm

First solve the linear program to obtain the fractional values x*.

0.3 0.6 0.2 0.7 0.4

Then flip a (biased) coin for each set with probability x*(S) being “head”.

Add all the “head” vertices to the set cover. Repeat log(n) rounds.

84

Performance

Theorem: The randomized rounding gives an O(log(n))-approximation.

Claim 1: The sets picked in each round have an expected cost of at most LP.

Claim 2: Each element is covered with high probability after O(log(n)) rounds.

So, after O(log(n)) rounds, the expected total cost is at most O(log(n)) LP,
and every element is covered with high probability, and hence the theorem.

Remark: It is NP-hard to have a better than O(log(n))-approximation!

85

Cost

Claim 1: The sets picked in each round have an expected cost of at most LP.

Q.E.D.

86

Feasibility

First consider the probability that an element e is covered after one round.

Claim 2: Each element is covered with high probability after O(log(n)) rounds.

Let say e is covered by S1, …, Sk which have values x1, …, xk.

By the linear program, x1 + x2 + … + xk >= 1.

Pr[e is not covered in one round] = (1 – x1)(1 – x2)…(1 – xk).

This is maximized when x1=x2=…=xk=1/k, why?

Pr[e is not covered in one round] <= (1 – 1/k)k

87

Feasibility

First consider the probability that an element e is covered after one round.

Claim 2: Each element is covered with high probability after O(log(n)) rounds.

Pr[e is not covered in one round] <= (1 – 1/k)k

So,

What about after O(log(n)) rounds?

88

Feasibility

Claim 2: Each element is covered with high probability after O(log(n)) rounds.

So,

So,

89

Remark

Let say the sets picked have an expected total cost of at most clog(n) LP.

Claim: The total cost is greater than 4clog(n) LP with probability at most ¼.

This follows from the Markov inequality, which says that:

Proof of Markov inequality:

The claim follows by substituting E[X]=clog(n)LP and t=4clog(n)LP

90

Wrap Up

Theorem: The randomized rounding gives an O(log(n))-approximation.

This is the only known rounding method for set cover.

Randomized rounding has many other applications.

