Introduction 0000	Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000

Role of Analysis and Linear Algebra in Differential Equations 2 Stability of Linear Systems

A. K. Nandakumaran

Department of Mathematics Indian Institute of Science, Bangalore 560012. Email: nands@iisc.ac.in

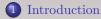
ODE: Stability Theory

BITS-Pilani, Goa Campus, Nov. 12, 2022

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

1 / 31

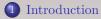
Introduction	Exponential	Qualitative Analysis	$\frac{2 \times 2}{000000}$ Systems	General Theorem
0000	00000	0000		00000000
Outline				



ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc 2 / 31

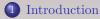
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Exponential	Qualitative Analysis	2 × 2 Systems	General Theorem
0000	00000	0000	0000000	00000000
Outline				



2 Exponential of a Matrix and Computation

Introduction 0000	Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Outline			

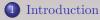


2 Exponential of a Matrix and Computation

3 Qualitative Analysis: Phase Plane and Phase Portrait

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 Q A.K.N/IISc 2 / 31

Introduction 0000	Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Outline			



2 Exponential of a Matrix and Computation

3 Qualitative Analysis: Phase Plane and Phase Portrait

4 Stability of 2×2 Systems

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc 2 / 31

イロト イポト イヨト イヨト 二日

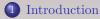
Introduction 0000	Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Outline			

イロト イポト イヨト イヨト 二日

A.K.N/IISc

590

2 / 31



2 Exponential of a Matrix and Computation

3 Qualitative Analysis: Phase Plane and Phase Portrait

4 Stability of 2×2 Systems

5 General Theorem

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022

• A general n^{th} order linear system of ODEs can be written in the form

$$\frac{d^n y}{dt^n} + p_1(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + p_{n-1}(t)\frac{dy}{dt} + p_n(t)y = g(t)$$
(1)

with n conditions such as initial or boundary conditions.

• A general n^{th} order linear system of ODEs can be written in the form

$$\frac{d^n y}{dt^n} + p_1(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + p_{n-1}(t)\frac{dy}{dt} + p_n(t)y = g(t)$$
(1)

with n conditions such as initial or boundary conditions.

• For example initial conditions can be of the form

$$y(0) = y_0, y^{(1)}(0) = y_1, \dots y^{(n-1)}(0) = y_{n-1}.$$

If g(t) = 0, the equation (1) is homogeneous linear, otherwise it is called non-homogeneous.

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 Marchaeler A.K.N/IISc 3 / 31

• By introducing new variables:

$$x_1 = y, x_2 = y^{(1)}, \cdots, x_n = y^{(n-1)}(t) = \frac{d^{(n-1)}y}{dt^{(n-1)}},$$

one can convert the equations (1) into a first order system of nequations which has a matrix representation $\dot{x}(t) = Ax(t) + G(t)$ where

$$A = A(t) = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -p_n & -p_{n-1} & \dots & \dots & -p_1 \end{bmatrix}, x(t) = \begin{bmatrix} x_1 \\ x_2 \\ \cdot \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}, G(t) = \begin{bmatrix} 0 \\ 0 \\ \cdot \\ \vdots \\ 0 \\ g(t) \end{bmatrix}$$

ODE: Stability Theory

BITS-Pilani, Goa Campus, Nov. 12, 2022

・ロト ・四ト ・ヨト э A.K.N/IISc 4 / 31

• A general system will be

$$\dot{x}(t) = A(t)x(t) + G(t), \ x(0) = x_0,$$
(2)

where A(t) is an $n \times n$ matrix whose elements are functions of t.

• A general system will be

$$\dot{x}(t) = A(t)x(t) + G(t), \ x(0) = x_0,$$
(2)

イロト イロト イヨト イヨト 三日

San

where A(t) is an $n \times n$ matrix whose elements are functions of t.

• If A depends on t, (2) is called a non-autonomous system and if A(t) = A is independent of t, it is called an autonomous system.

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc 5 / 31

• A general system will be

 $\dot{x}(t) = A(t)x(t) + G(t), \quad x(0) = x_0,$ (2)

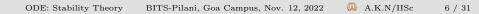
where A(t) is an $n \times n$ matrix whose elements are functions of t.

• If A depends on t, (2) is called a non-autonomous system and if A(t) = A is independent of t, it is called an autonomous system.

• The existence and uniqueness can be obtained directly from the general theory under suitable continuity assumptions on A(t) and G(t). It can also be derived directly.

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 QA.K.N/IISc 5 / 31

Introduction $000 \bullet$		Qualitative Analysis 0000	2×2 Systems 0000000	General Theorem 00000000
Aim of this	talk			



イロト イヨト イヨト イヨト 二日

Introduction 000		Qualitative Analysis 0000	2×2 Systems 0000000	General Theorem 00000000
Aim of this	talk			

• We give a representation of a solution using *exponential of a matrix*. For non-autonomous systems, one need to consider *transition matrices*

San

Introduction 000		Qualitative Analysis 0000	2×2 Systems	General Theorem 00000000
Aim of this	talk			

• We give a representation of a solution using *exponential of a matrix*. For non-autonomous systems, one need to consider *transition matrices*

• The main part of this talk is to study the stability of 2×2 systems via the diagonalization of matrices.

San

Introduction 000		Qualitative Analysis 0000	2×2 Systems	General Theorem 00000000
Aim of this	talk			

• We give a representation of a solution using *exponential of a matrix*. For non-autonomous systems, one need to consider *transition matrices*

• The main part of this talk is to study the stability of 2×2 systems via the diagonalization of matrices.

• Linear algebra, eigenvalues, eigenvectors, diagonalization etc. play a fundamental role. It also motivates these notions in linear algebra.

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 MAK.N/IISc 6 / 31

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ のへで

$\begin{array}{c} \text{Introduction} \\ \text{0000} \end{array}$	Exponential ●0000	Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Definition o	f e^{tA}			

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Introduction 0000	Exponential ●0000	Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Definition o	$f e^{tA}$			

• One can consider the partial sums of operators $A_m = \sum_{k=0}^m t^k \frac{A^k}{k!}$ and $||A_m|| \le e^{||A||T}, 0 \le t \le T$ and prove that A_m converges to a linear operator from $\mathbb{R}^n \to \mathbb{R}^n$ whose matrix representation is denoted by e^{tA} .

$\begin{array}{c} \text{Introduction} \\ \text{0000} \end{array}$	$\underset{\bullet 0000}{\text{Exponential}}$	Qualitative Analysis 0000	$\frac{2 \times 2}{0000000}$ Systems	General Theorem 00000000
Definition of	of e^{tA}			

• One can consider the partial sums of operators $A_m = \sum_{k=0}^m t^k \frac{A^k}{k!}$ and $||A_m|| \le e^{||A||T}$, $0 \le t \le T$ and prove that A_m converges to a linear operator from $\mathbb{R}^n \to \mathbb{R}^n$ whose matrix representation is denoted by e^{tA} .

• In other words,
$$e^{tA} = \sum_{k=0}^{\infty} t^k \frac{A^k}{k!}$$

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc

500

7 / 31

$\begin{array}{c} \text{Introduction} \\ \text{0000} \end{array}$	$\underset{\bullet 0000}{\text{Exponential}}$	Qualitative Analysis 0000	$\frac{2 \times 2}{0000000}$ Systems	General Theorem 00000000
Definition of	of e^{tA}			

• One can consider the partial sums of operators $A_m = \sum_{k=0}^m t^k \frac{A^k}{k!}$ and $||A_m|| \le e^{||A||T}$, $0 \le t \le T$ and prove that A_m converges to a linear operator from $\mathbb{R}^n \to \mathbb{R}^n$ whose matrix representation is denoted by e^{tA} .

• In other words,
$$e^{tA} = \sum_{k=0}^{\infty} t^k \frac{A^k}{k!}$$

• Exercise Compute $\frac{d}{dt}(e^{(t-t_0)A}x_0)$, justify and show that $x(t) = e^{(t-t_0)A}x_0$ is a solution to the system $\dot{x}(t) = Ax(t), x(t_0) = x_0$. Further, directly show that it is the unique solution $\mathbb{P} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 (A.K.N/IISc) 7/31

• Even the solution has explicit representation as $x(t) = e^{tA}x_0$, the computation of e^{tA} is not easy and in fact, it does not reveal anything about the behaviour of trajectories. This is more interesting in application than a mere representation.

イロト イロト イヨト ・ヨ

Sac

• Even the solution has explicit representation as $x(t) = e^{tA}x_0$, the computation of e^{tA} is not easy and in fact, it does not reveal anything about the behaviour of trajectories. This is more interesting in application than a mere representation.

• If $A = diag(\lambda_1, \lambda_2, ..., \lambda_n)$ is a diagonal matrix, then

$$e^A = diag(e^{\lambda_1}, e^{\lambda_2}, \dots e^{\lambda_n})$$

is again a diagonal matrix.

• Even the solution has explicit representation as $x(t) = e^{tA}x_0$, the computation of e^{tA} is not easy and in fact, it does not reveal anything about the behaviour of trajectories. This is more interesting in application than a mere representation.

• If $A = diag(\lambda_1, \lambda_2, ..., \lambda_n)$ is a diagonal matrix, then

 $e^{A} = diag(e^{\lambda_{1}}, e^{\lambda_{2}}, \dots e^{\lambda_{n}})$

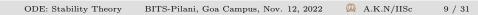
is again a diagonal matrix.

• (Similarity) Suppose $C = PAP^{-1}$ for some invertible P, Then $e^{C} = Pe^{A}P^{-1}$. In particular, if C is diagonalizable, that is $C = diag(\lambda_1, \lambda_2, ..., \lambda_n)$, then

$$e^{A} = e^{P^{-1}CP} = P^{-1}e^{C}P = P^{-1}diag(e^{\lambda_{1}}, e^{\lambda_{2}}, \dots e^{\lambda_{n}})P$$

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 Q A.K.N/IISc 8 / 31

Introduction 0000	$ \begin{array}{c} \text{Exponential} \\ \text{oo} \bullet \text{oo} \end{array} $	Qualitative Analysis 0000	$\frac{2 \times 2}{0000000}$ Systems	General Theorem 00000000
Diagonaliza	bility			



・ロト ・四ト ・ヨト ・ヨト - ヨー

Introduction 0000	Exponential 00000	Qualitative Analysis 0000	2×2 Systems 0000000	General Theorem 00000000
Diagonalizability				

• Under the similarity transformation, one convert the ODE $\dot{x}(t) = Ax(t)$ to a system $\dot{y}(t) = Cy(t)$ by a suitable linear transformation. The interesting point is that the qualitative behaviour of the two trajectories will be similar.

Introduction 0000	Exponential 00000	Qualitative Analysis 0000	2×2 Systems 0000000	General Theorem 00000000
Diagonalizability				

• Under the similarity transformation, one convert the ODE $\dot{x}(t) = Ax(t)$ to a system $\dot{y}(t) = Cy(t)$ by a suitable linear transformation. The interesting point is that the qualitative behaviour of the two trajectories will be similar.

 \bullet In particular, if C is diagonal, the behaviour of y can be easily derived

$\underset{0000}{\mathrm{Introduction}}$	Exponential 00000	Qualitative Analysis 0000	2×2 Systems 0000000	General Theorem 00000000
Diagonalizability				

• Under the similarity transformation, one convert the ODE $\dot{x}(t) = Ax(t)$ to a system $\dot{y}(t) = Cy(t)$ by a suitable linear transformation. The interesting point is that the qualitative behaviour of the two trajectories will be similar.

• In particular, if C is diagonal, the behaviour of y can be easily derived

• In general, A need not be diagonalizable and it depends on the eigenvalues and eigenvectors. Hence the study of linear algebra.

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 Q A.K.N/IISc 9 / 31

Introduction 0000	Exponential 00000	Qualitative Analysis 0000	2×2 Systems 0000000	General Theorem 00000000
Diagonalizability				

• Under the similarity transformation, one convert the ODE $\dot{x}(t) = Ax(t)$ to a system $\dot{y}(t) = Cy(t)$ by a suitable linear transformation. The interesting point is that the qualitative behaviour of the two trajectories will be similar.

 \bullet In particular, if C is diagonal, the behaviour of y can be easily derived

• In general, A need not be diagonalizable and it depends on the eigenvalues and eigenvectors. Hence the study of linear algebra.

• If A not diagonalizable, then what? Jordan decomposition

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc 9 / 31

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ のへで

Introduction 0000		Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Decomposit	tion of 2×2 s	systems		

• Every 2×2 system $\dot{x} = Ax$, $x(0) = x_0$ is *linearly equivalent* to one of the three cases:

(C1)
$$B = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}$$
, (C2) $C = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, (C3) $D = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

 <□><</td>
 <□><</td>
 <</td>
 >

 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

 >
 >
 >
 <td

• Every 2×2 system $\dot{x} = Ax$, $x(0) = x_0$ is *linearly equivalent* to one of the three cases:

(C1)
$$B = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}$$
, (C2) $C = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, (C3) $D = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

• (C1) if A has real eigenvalues (need not be distinct), but with two independent eigenvectors

• Every 2×2 system $\dot{x} = Ax$, $x(0) = x_0$ is *linearly equivalent* to one of the three cases:

(C1)
$$B = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}$$
, (C2) $C = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, (C3) $D = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

• (C1) if A has real eigenvalues (need not be distinct), but with two independent eigenvectors

• (C2) if A has a double real eigenvalue with only one *independent* eigenvector

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc

・ロト ・母ト ・ヨト ・ヨト

• Every 2×2 system $\dot{x} = Ax$, $x(0) = x_0$ is *linearly equivalent* to one of the three cases:

(C1)
$$B = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}$$
, (C2) $C = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, (C3) $D = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

• (C1) if A has real eigenvalues (need not be distinct), but with two independent eigenvectors

• (C2) if A has a double real eigenvalue with only one *independent* eigenvector

• (C3) if A has two complex eigenvalues a + ib and a - ib. $a \ge b$ ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 (A.K.N/IISc 31)

Introduction	Exponential	Qualitative Analysis	2×2 Systems	General Theorem
0000	0000	0000		00000000
Exponential	of the Special	matrices		

• One can compute the exponential of the above matrices easily as

$$e^{B} = \begin{bmatrix} e^{\lambda} & 0\\ 0 & e^{\mu} \end{bmatrix}, \ e^{C} = e^{\lambda} \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}, \ e^{D} = e^{a} \begin{bmatrix} \cos(b) & -\sin(b)\\ \sin(b) & \cos(b). \end{bmatrix}$$

IntroductionExponential
occoQualitative Analysis2 × 2 Systems
occoGeneral Theorem
occocoExponential of the Special matrices

• One can compute the exponential of the above matrices easily as

$$e^B = \begin{bmatrix} e^{\lambda} & 0\\ 0 & e^{\mu} \end{bmatrix}, \ e^C = e^{\lambda} \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}, \ e^D = e^a \begin{bmatrix} \cos(b) & -\sin(b)\\ \sin(b) & \cos(b). \end{bmatrix}$$

• This will allow us to write e^{tB} , e^{tC} and e^{tD} and hence the solutions to the differential systems corresponding to the above class of matrices $e^{tB}x_0$, $e^{tC}x_0$ and $e^{tD}x_0$

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 Q A.K.N/IISc 31

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆

Introduction Exponential coco Qualitative Analysis 2 < 2 Systems coco General Theorem cococo Exponential of the Special matrices

• One can compute the exponential of the above matrices easily as

$$e^B = \begin{bmatrix} e^{\lambda} & 0\\ 0 & e^{\mu} \end{bmatrix}, \ e^C = e^{\lambda} \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}, \ e^D = e^a \begin{bmatrix} \cos(b) & -\sin(b)\\ \sin(b) & \cos(b). \end{bmatrix}$$

• This will allow us to write e^{tB} , e^{tC} and e^{tD} and hence the solutions to the differential systems corresponding to the above class of matrices $e^{tB}x_0$, $e^{tC}x_0$ and $e^{tD}x_0$

• We have

$$e^{tB} = \begin{bmatrix} e^{t\lambda} & 0\\ 0 & e^{t\mu} \end{bmatrix}, \quad e^{tC} = e^{t\lambda} \begin{bmatrix} 1 & t\\ 0 & 1 \end{bmatrix}, \quad e^{tD} = e^{ta} \begin{bmatrix} \cos(tb) & -\sin(tb)\\ \sin(tb) & \cos(tb) \end{bmatrix}$$

• Consider the system (decoupled)

$$\dot{x_1} = -x_1, \ \dot{x_2} = 2x_2, \ x_1(0) = x_{01}, \ x_2(0) = x_{02}$$
 (3)

• Consider the system (decoupled)

$$\dot{x_1} = -x_1, \ \dot{x_2} = 2x_2, \ x_1(0) = x_{01}, \ x_2(0) = x_{02}$$
 (3)

• The solution is given by
$$x(t) = \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{bmatrix} x_0.$$

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc 31

▲□▶ ▲圖▶ ▲国▶ ▲国▶

• Consider the system (decoupled)

$$\dot{x_1} = -x_1, \ \dot{x_2} = 2x_2, \ x_1(0) = x_{01}, \ x_2(0) = x_{02}$$
 (3)

• The solution is given by $x(t) = \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{bmatrix} x_0.$

• From a dynamic system point of view x(t) describes the motion of a particle in x_1x_2 -plane which we refer as *phase plane* and t is treated as time. At t = 0, the particle is at x_0 and particle moves to x(t) at time t.

 ・ イラ・ イヨ・ モラ・ヨー つのへで 12 / ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 (Q) A.K.N/IISc 31

• Consider the system (decoupled)

$$\dot{x_1} = -x_1, \ \dot{x_2} = 2x_2, \ x_1(0) = x_{01}, \ x_2(0) = x_{02}$$
 (3)

• The solution is given by $x(t) = \begin{vmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{vmatrix} x_0.$

• From a dynamic system point of view x(t) describes the motion of a particle in x_1x_2 -plane which we refer as phase plane and t is treated as time. At t = 0, the particle is at x_0 and particle moves to x(t) at time t.

• The representation of all solution curves in the phase plane (called phase space in higher dimensions) \mathbb{R}^n is known as phase portrait. $\frac{2}{12}$ / 31

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 A.K.N/IISc

Introduction 0000	Exponential 00000	Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Saddle poin	t equilibrium			

• The following figure gives the various trajectories of the particle under motion, where the arrow represents the direction of motion.

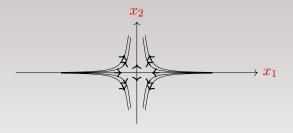


Figure: Saddle Point Equilibrium

Introduction 0000	Exponential 00000	Qualitative Analysis 0000	$\frac{2 \times 2}{0000000}$ Systems	General Theorem 00000000
Saddle poin	t equilibrium			

• The following figure gives the various trajectories of the particle under motion, where the arrow represents the direction of motion.

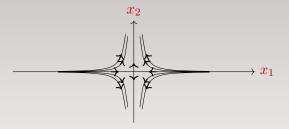


Figure: Saddle Point Equilibrium

• This is the feature of any system of the form (C1) with different signs for λ and μ except that the direction of arrows might change.

(日) (四) (三) (三)

• Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.

• Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.

• If we are viewing a second order equation as a first order system, then phase plane is the plane consisting of axes which represents position $x_1 = x(t)$ and velocity $x_2 = \dot{x}(t)$.

Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.
If we are viewing a second order equation as a first order system, then phase plane is the plane consisting of aver which represents.

then phase plane is the plane consisting of axes which represents position $x_1 = x(t)$ and velocity $x_2 = \dot{x}(t)$.

• Thus a dynamical system is a mapping $\Phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ given by the solution $x(t, x_0)$, that is $\Phi(t, x_0) = x(t, x_0)$.

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc 31

• Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.

• If we are viewing a second order equation as a first order system, then phase plane is the plane consisting of axes which represents position $x_1 = x(t)$ and velocity $x_2 = \dot{x}(t)$.

• Thus a dynamical system is a mapping $\Phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ given by the solution $x(t, x_0)$, that is $\Phi(t, x_0) = x(t, x_0)$.

• On the other hand, the collection $\{\phi_t = e^{tA} : \mathbb{R}^n \to \mathbb{R}^n, t \in \mathbb{R}\}$ is called the *flow* of the linear system. The flow ϕ_t can be viewed as the motion of all the points in the set. This notion is important in understanding the motion of particles in a neighborhood like in in fluid flows.

<ロト < 部 ト < 臣 ト < 臣 ト 王 の < で 14 /

31

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc

• Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.

• If we are viewing a second order equation as a first order system, then phase plane is the plane consisting of axes which represents position $x_1 = x(t)$ and velocity $x_2 = \dot{x}(t)$.

• Thus a dynamical system is a mapping $\Phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ given by the solution $x(t, x_0)$, that is $\Phi(t, x_0) = x(t, x_0)$.

• On the other hand, the collection $\{\phi_t = e^{tA} : \mathbb{R}^n \to \mathbb{R}^n, t \in \mathbb{R}\}$ is called the *flow* of the linear system. The flow ϕ_t can be viewed as the motion of all the points in the set. This notion is important in understanding the motion of particles in a neighborhood like in in fluid flows.

200

31

(日)

• Another notion is a vector field (x, Ax)

Introduction 0000		Qualitative Analysis 000●	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Equilibrium	Points			

Introduction 0000	Exponential 00000	Qualitative Analysis	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Equilibrium	o Points			

• A nonlinear system may not have equilibrium points. However, for a linear autonomous system, that is f = Ax, the origin is always an equilibrium point. In fact the set of all equilibrium points are given by Ker(A)

Introduction 0000		Qualitative Analysis	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Equilibrium	o Points			

• A nonlinear system may not have equilibrium points. However, for a linear autonomous system, that is f = Ax, the origin is always an equilibrium point. In fact the set of all equilibrium points are given by Ker(A)

• If A is invertible, equivalently all the eigenvalues are non-zero, then 0 is the only equilibrium point. Otherwise, Ker(A) has dimension 1 or 2.

BITS-Pilani, Goa Campus, Nov. 12, 2022

ODE: Stability Theory

・ロト ・雪 ・ ・ 田 ・ ・ 田 ・ - 田

A.K.N/IISc

Introduction 0000		Qualitative Analysis 000●	$\frac{2 \times 2}{000000}$ Systems	General Theorem 00000000
Equilibrium	Points			

• A nonlinear system may not have equilibrium points. However, for a linear autonomous system, that is f = Ax, the origin is always an equilibrium point. In fact the set of all equilibrium points are given by Ker(A)

• If A is invertible, equivalently all the eigenvalues are non-zero, then 0 is the only equilibrium point. Otherwise, Ker(A) has dimension 1 or 2.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆

200

• Now we move on to study 2×2 systems and it is easy to have complete analysis as there are only two eigenvalues.

• We consider the case of (C1), but same sign for λ and μ . For, take $B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Then the solution is given by $x_1(t) = x_{01}e^{2t}, \ x_2(t) = x_{02}e^t$. Eliminating t, we will get $x_1 = cx_2^2$.

• We consider the case of (C1), but same sign for λ and μ . For, take $B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Then the solution is given by $x_1(t) = x_{01}e^{2t}, \ x_2(t) = x_{02}e^t$. Eliminating t, we will get $x_1 = cx_2^2$.

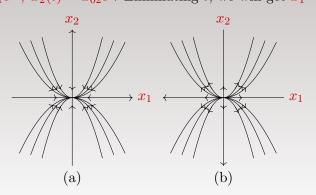


Figure: (a) Stable Node, (b) Unstable Node

A.K.N/IISc

31

ODE: Stability Theory

BITS-Pilani, Goa Campus, Nov. 12, 2022

• We consider the case of (C1), but same sign for λ and μ . For, take $B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Then the solution is given by $x_1(t) = x_{01}e^{2t}, \ x_2(t) = x_{02}e^t$. Eliminating t, we will get $x_1 = cx_2^2$.

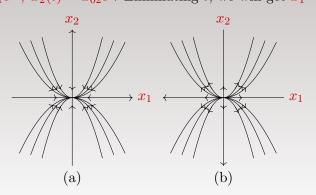


Figure: (a) Stable Node, (b) Unstable Node

A.K.N/IISc

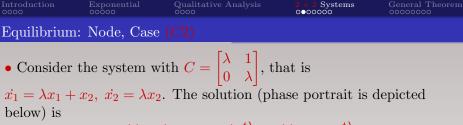
31

ODE: Stability Theory

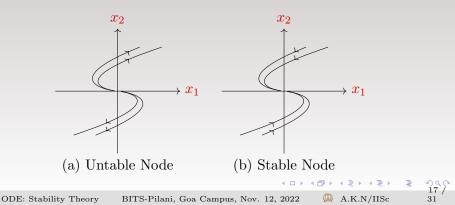
BITS-Pilani, Goa Campus, Nov. 12, 2022

IntroductionExponential
coccoQualitative Analysis 2×2 Systems
coccoccGeneral Theorem
coccoccEquilibrium:Node, Case (C2)• Consider the system with $C = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, that is
 $\dot{x_1} = \lambda x_1 + x_2, \ \dot{x_2} = \lambda x_2$. The solution (phase portrait is depicted
below) is

$$x_1(t) = (x_{01} + x_{02}t)e^{t\lambda}, \ x_2(t) = x_{02}e^{t\lambda}$$



$$x_1(t) = (x_{01} + x_{02}t)e^{t\lambda}, \ x_2(t) = x_{02}e^{t\lambda}$$



Introduction 0000	Exponential 00000	Qualitative Analysis 0000	2×2 Systems	General Theorem 00000000
Equilibrium:	Focus, Case	(C3)		

$$\dot{x_1} = ax_1 - bx_2, \ \dot{x_2} = bx_1 + ax_2$$

.

$$\dot{x_1} = ax_1 - bx_2, \ \dot{x_2} = bx_1 + ax_2$$

• Thus
$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
 and the solution is
$$x(t) = e^{at} \begin{bmatrix} \cos(bt) & -\sin(bt) \\ \sin(bt) & \cos(bt) \end{bmatrix} x_0$$

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc

・ロト ・ 四ト ・ ヨト ・ ヨト

E

2 18/

.

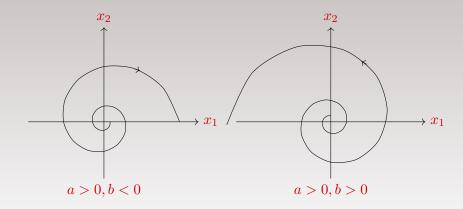
$$\dot{x_1} = ax_1 - bx_2, \ \dot{x_2} = bx_1 + ax_2$$

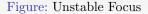
• Thus
$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
 and the solution is
$$x(t) = e^{at} \begin{bmatrix} \cos(bt) & -\sin(bt) \\ \sin(bt) & \cos(bt) \end{bmatrix} x_0$$

• Indeed sign(a) will determine the stability, whereas the matrix components causes the periodicity with sign(b) determining the orientation. The phase portrait with $a \neq 0$ and a = 0 are given below.

18

• The solution goes to infinity from any initial value rotating around the origin.





ODE: Stability Theory

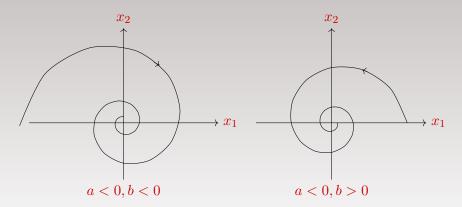
BITS-Pilani, Goa Campus, Nov. 12, 2022

・ロト ・四ト ・ヨト ・ヨト

A.K.N/IISc

20 19/

• The solution goes to 0 from any initial value rotating around the origin.



ODE: Stability Theory

BITS-Pilani, Goa Campus, Nov. 12, 2022

・ロト ・四ト ・ヨト ・ヨト

A.K.N/IISc

э

207

• Pure periodic rotations in the case of pure imaginary eigenvalues.

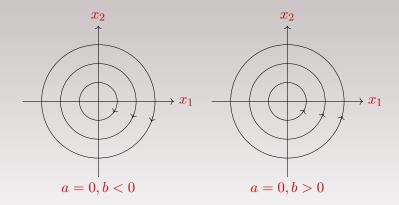


Figure: Centre

ODE: Stability Theory

BITS-Pilani, Goa Campus, Nov. 12, 2022

イロト イヨト イヨト イヨト

A.K.N/IISc

э

21/

• So far we have analyzed the situation when there are no 0 eigenvalues. When the matrix A has 0 eigenvalue, then the equation Ax = 0 will have more than one non-trivial solution which will be one or two dimensional subspace.

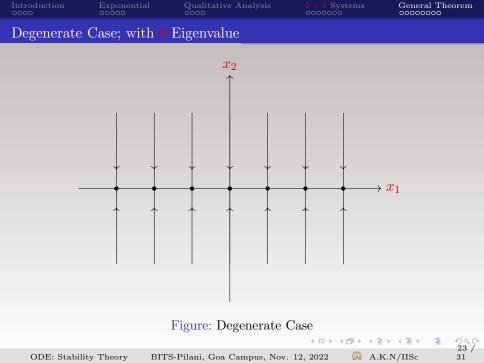
• So far we have analyzed the situation when there are no 0 eigenvalues. When the matrix A has 0 eigenvalue, then the equation Ax = 0 will have more than one non-trivial solution which will be one or two dimensional subspace.

• Each of these non-trivial solution will be an equilibrium point

• So far we have analyzed the situation when there are no 0 eigenvalues. When the matrix A has 0 eigenvalue, then the equation Ax = 0 will have more than one non-trivial solution which will be one or two dimensional subspace.

• Each of these non-trivial solution will be an equilibrium point

• Consider the case $A = \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix}$, then $x_1(t) = x_{01}$, $x_2(t) = x_{02}e^{-2t}$. In this degenerate case, all the points on the x_1 -axis are equilibrium points. (A point x_0 is called an *equilibrium point* of the dynamical system $\dot{x} = f(x)$ if $f(x_0) = 0$.)



Introduction 0000	$ \begin{array}{c} \text{Exponential} \\ \text{00000} \end{array} $	Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem ●0000000
General Th	eorem			

• Two matrices A and B are said to be *linearly equivalent* if there is an invertible matrix P such that $B = P^{-1}AP$ or $A = PBP^{-1}$.

Introduction 0000		Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem ●0000000
General Th	eorem			

• Two matrices A and B are said to be *linearly equivalent* if there is an invertible matrix P such that $B = P^{-1}AP$ or $A = PBP^{-1}$. In this case, one can obtain the solution of the system $\dot{x} = Ax$ from the solution of the system $\dot{y} = By$ and vice-versa as follows:

Introduction 0000		Qualitative Analysis 0000	$\frac{2 \times 2}{0000000}$ Systems	General Theorem ●0000000
General Th	eorem			

• Two matrices A and B are said to be *linearly equivalent* if there is an invertible matrix P such that $B = P^{-1}AP$ or $A = PBP^{-1}$. In this case, one can obtain the solution of the system $\dot{x} = Ax$ from the solution of the system $\dot{y} = By$ and vice-versa as follows:

• We have

$$\dot{x} = Ax \Rightarrow \dot{x} = PBP^{-1}x, \ x(0) = x_0$$

Put $y(t) = P^{-1}x(t)$, then y satisfies

 $\dot{y}(t) = By(t), \ y(0) = P^{-1}x_0.$

・ロト ・御 ト ・ 南 ト ・ 市 ・ 市

24 /

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🥘 A.K.N/IISc

Introduction 0000		Qualitative Analysis 0000	$\frac{2 \times 2}{0000000}$ Systems	General Theorem ●0000000
General Th	eorem			

• Two matrices A and B are said to be *linearly equivalent* if there is an invertible matrix P such that $B = P^{-1}AP$ or $A = PBP^{-1}$. In this case, one can obtain the solution of the system $\dot{x} = Ax$ from the solution of the system $\dot{y} = By$ and vice-versa as follows:

• We have

$$\dot{x} = Ax \Rightarrow \dot{x} = PBP^{-1}x, \ x(0) = x_0$$

Put $y(t) = P^{-1}x(t)$, then y satisfies

 $\dot{y}(t) = By(t), \ y(0) = P^{-1}x_0.$

• Thus the solution x is given by

$$x(t) = Py(t) = Pe^{Bt}y_0 = Pe^{Bt}P^{-1}x_0.$$

・ロット 4 聞 > 4 国 > 4 国 > 一回 >

24 1

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🥘 A.K.N/IISc

• For a 2×2 system, the general *Jordan form* gives the following theorem.

Theorem

Given a 2×2 matrix A, there is an invertible matrix P such that $A = PBP^{-1}$ and B takes one of the forms of (C1), (C2) or (C3).

Introduction 0000		Qualitative Analysis 0000	$\frac{2 \times 2}{000000}$ Systems	General Theorem oooooooo
General Th	eorems, Cont	i		

• For a 2×2 system, the general Jordan form gives the following theorem.

Theorem

Given a 2×2 matrix A, there is an invertible matrix P such that $A = PBP^{-1}$ and B takes one of the forms of (C1), (C2) or (C3).

Remark

The stability and nature of the solution trajectories do not change under linear equivalence.

・ロト ・四ト ・ヨト ・ヨト

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 M A.K.N/IISc

Introduction	Exponential	Qualitative Analysis	$\frac{2 \times 2}{000000}$ Systems	General Theorem
0000	00000	0000		oo●ooooo
Linear Equi	ivalence			

Definition

A linear system (3) is said to have a saddle, a node, a focus or a center at the origin, respectively, if the matrix linearly equivalent to

$$(I) \quad B_{1} = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}, \ \lambda \mu < 0$$
$$(II)B_{1}, \lambda \mu > 0 \quad or \quad B_{2} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \ \lambda \neq 0$$
$$(III) \quad B_{3} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, with \ a \neq 0, \ b \neq 0$$
$$(IV) \quad B_{4} = \begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix}, \ b \neq 0$$

ODE: Stability Theory

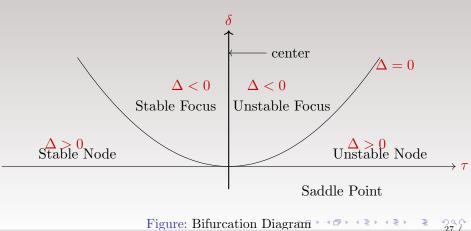
BITS-Pilani, Goa Campus, Nov. 12, 2022

・ロト ・四ト ・ヨト ・ヨト

≣ _____ 26

Introduction	Exponential	Qualitative Analysis	$\frac{2 \times 2}{000000}$ Systems	General Theorem
0000	00000	0000		000●0000
Bifurcation	Diagram			

• A schematic representation (Bifurcation diagram) is shown below connecting the determinant and trace of A. Let $\delta = det(A)$, $\tau = trace(A)$ and $\Delta = \tau^2 - 4\delta$



ODE: Stability Theory

BITS-Pilani, Goa Campus, Nov. 12, 2022

A.K.N/IISc

Introduction 0000	Exponential 00000	Qualitative Analysis 0000	$\frac{2 \times 2}{0000000}$ Systems	General Theorem 00000000
An Example				

$$\dot{x_1} = -x_1 - 3x_2, \quad \dot{x_2} = 2x_2$$

The matrix $A = \begin{bmatrix} -1 & -3 \\ 0 & 2 \end{bmatrix}$ has eigenvalues $\lambda_1 = -1, \ \lambda_2 = 2$ with corresponding eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Introduction 0000	Exponential 00000	Qualitative Analysis 0000	2×2 Systems 0000000	General Theorem 0000●000
An Example	`			

$$\dot{x_1} = -x_1 - 3x_2, \quad \dot{x_2} = 2x_2$$

The matrix $A = \begin{bmatrix} -1 & -3 \\ 0 & 2 \end{bmatrix}$ has eigenvalues $\lambda_1 = -1, \ \lambda_2 = 2$ with corresponding eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
• Hence $P = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ and $P^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

 28° Q A.K.N/IISc BITS-Pilani, Goa Campus, Nov. 12, 2022 31ODE: Stability Theory

$\underset{0000}{\mathrm{Introduction}}$		Qualitative Analysis 0000	$\frac{2 \times 2}{0000000}$ Systems	General Theorem 0000●000
An Exampl	P			

$$\dot{x_1} = -x_1 - 3x_2, \quad \dot{x_2} = 2x_2$$

The matrix $A = \begin{bmatrix} -1 & -3 \\ 0 & 2 \end{bmatrix}$ has eigenvalues $\lambda_1 = -1, \quad \lambda_2 = 2$ with corresponding eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

• Hence
$$P = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
 and $P^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

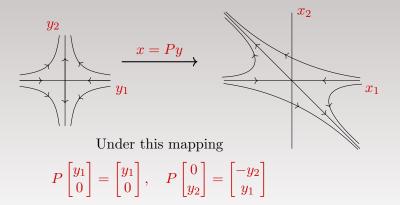
• Further $B = P^{-1}AP = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \Rightarrow \dot{y_1} = -y_1, \ \dot{y_2} = 2y_2$, which gives a diagonal system equivalent to the given system. Note that the stability do not change. Moreover, since it is a linear correspondence, the *x* and *y* axes will corresponds to lines passing through the origin.

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 Q A.K.N/IISc

:

$\begin{array}{c} \text{Introduction} \\ \text{0000} \end{array}$	$\substack{\text{Exponential}\\\text{00000}}$	Qualitative Analysis 0000	2×2 Systems	General Theorem 00000000
An Example	, Conti			

• The phase portrait can be depicted as follows.



ODE: Stability Theory

BITS-Pilani, Goa Campus, Nov. 12, 2022

・ロト ・四ト ・ヨト ・ヨト

A.K.N/IISc

э

 29^{2}

Introduction	Exponential	Qualitative Analysis	2×2 Systems	General Theorem		
0000	00000	0000		000000€0		
Higher Dimensional Systems						

• When the eigenvalues of A are distinct, then analysis and the representation of the solution is quite straight forward.

	ntroduction 0000	Exponential 00000	Qualitative Analysis 0000	2×2 Systems	General Theorem 00000000
]	Higher Dimer	nsional Syster	ms		

• When the eigenvalues of A are distinct, then analysis and the representation of the solution is quite straight forward.

• In general, one can appeal to the Jordan decomposition which decomposition using the eigenvalues. One need to classify eigenvalues with negative real part, 0 real part and positive real part to obtain subspaces \mathbb{R}^n which are stable, center and unstable. The stable and unstable subspaces are invariant under the flow.

ODE: Stability Theory BITS-Pilani, Goa Campus, Nov. 12, 2022 🚇 A.K.N/IISc 31

・ロト ・四ト ・ヨト ・ヨト

Thank You! A. K. Nandakumaran, IISc., Bangalore

Thank You! A. K. Nandakumaran, IISc., Bangalore

DQC

Video Course (ODE): http://nptel.ac.in/courses/111108081/ Video Course (PDE-1): https://nptel.ac.in/courses/111/108/111108144/ Video Course (PDE-2): https://nptel.ac.in/courses/111/108/111108152/