# Role of Analysis and Linear Algebra in Differential Equations 2 <br> Stability of Linear Systems 

A. K. Nandakumaran


Department of Mathematics
Indian Institute of Science, Bangalore 560012.
Email: nands@iisc.ac.in

## Outline

(1) Introduction

## Outline

(1) Introduction
(2) Exponential of a Matrix and Computation

## Outline

(1) Introduction
(2) Exponential of a Matrix and Computation
(3) Qualitative Analysis: Phase Plane and Phase Portrait

## Outline

(1) Introduction
(2) Exponential of a Matrix and Computation
(3) Qualitative Analysis: Phase Plane and Phase Portrait

4 Stability of $2 \times 2$ Systems

## Outline

(1) Introduction
(2) Exponential of a Matrix and Computation
(3) Qualitative Analysis: Phase Plane and Phase Portrait
4) Stability of $2 \times 2$ Systems
(5) General Theorem

## Order Linear System

- A general $n^{\text {th }}$ order linear system of ODEs can be written in the form

$$
\begin{equation*}
\frac{d^{n} y}{d t^{n}}+p_{1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\ldots+p_{n-1}(t) \frac{d y}{d t}+p_{n}(t) y=g(t) \tag{1}
\end{equation*}
$$

with $n$ conditions such as initial or boundary conditions.

## Order Linear System

- A general $n^{\text {th }}$ order linear system of ODEs can be written in the form

$$
\begin{equation*}
\frac{d^{n} y}{d t^{n}}+p_{1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\ldots+p_{n-1}(t) \frac{d y}{d t}+p_{n}(t) y=g(t) \tag{1}
\end{equation*}
$$

with $n$ conditions such as initial or boundary conditions.

- For example initial conditions can be of the form

$$
y(0)=y_{0}, y^{(1)}(0)=y_{1}, \ldots y^{(n-1)}(0)=y_{n-1} .
$$

If $g(t)=0$, the equation (1) is homogeneous linear, otherwise it is called non-homogeneous.

## Order Linear System, Conti...

- By introducing new variables:

$$
x_{1}=y, x_{2}=y^{(1)}, \cdots, x_{n}=y^{(n-1)}(t)=\frac{d^{(n-1)} y}{d t^{(n-1)}}
$$

one can convert the equations (1) into a first order system of $n$ equations which has a matrix representation $\dot{x}(t)=A x(t)+G(t)$ where

$$
A=A(t)=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 \\
-p_{n} & -p_{n-1} & \ldots & \ldots & -p_{1}
\end{array}\right], x(t)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
. \\
x_{n-1} \\
x_{n}
\end{array}\right], G(t)=\left[\begin{array}{c}
0 \\
0 \\
. \\
. \\
0 \\
g(t)
\end{array}\right]
$$

## Order Linear System, Conti...

- A general system will be

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t)+G(t), \quad x(0)=x_{0}, \tag{2}
\end{equation*}
$$

where $A(t)$ is an $n \times n$ matrix whose elements are functions of $t$.

## Order Linear System, Conti...

- A general system will be

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t)+G(t), \quad x(0)=x_{0}, \tag{2}
\end{equation*}
$$

where $A(t)$ is an $n \times n$ matrix whose elements are functions of $t$.

- If $A$ depends on $t,(2)$ is called a non-autonomous system and if $A(t)=A$ is independent of $t$, it is called an autonomous system.


## Order Linear System, Conti...

- A general system will be

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t)+G(t), \quad x(0)=x_{0}, \tag{2}
\end{equation*}
$$

where $A(t)$ is an $n \times n$ matrix whose elements are functions of $t$.

- If $A$ depends on $t,(2)$ is called a non-autonomous system and if $A(t)=A$ is independent of $t$, it is called an autonomous system.
- The existence and uniqueness can be obtained directly from the general theory under suitable continuity assumptions on $A(t)$ and $G(t)$. It can also be derived directly.


## Aim of this talk

- In this talk, we consider autonomous system, that is $A$ independent of $t$, in other words, $A$ is a constant matrix.


## Aim of this talk

- In this talk, we consider autonomous system, that is $A$ independent of $t$, in other words, $A$ is a constant matrix.
- We give a representation of a solution using exponential of a matrix. For non-autonomous systems, one need to consider transition matrices


## Aim of this talk

- In this talk, we consider autonomous system, that is $A$ independent of $t$, in other words, $A$ is a constant matrix.
- We give a representation of a solution using exponential of a matrix. For non-autonomous systems, one need to consider transition matrices
- The main part of this talk is to study the stability of $2 \times 2$ systems via the diagonalization of matrices.


## Aim of this talk

- In this talk, we consider autonomous system, that is $A$ independent of $t$, in other words, $A$ is a constant matrix.
- We give a representation of a solution using exponential of a matrix. For non-autonomous systems, one need to consider transition matrices
- The main part of this talk is to study the stability of $2 \times 2$ systems via the diagonalization of matrices.
- Linear algebra, eigenvalues, eigenvectors, diagonalization etc. play a fundamental role. It also motivates these notions in linear algebra.


## Definition of

- Given a matrix $A$, it can be viewed as a linear operator $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose norm is given by $\|A\|=\sup |A x|$, where $|\cdot|$ is the norm (or $|x|=1$ modulus) in $\mathbb{R}^{n}$.


## Definition of

- Given a matrix $A$, it can be viewed as a linear operator $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose norm is given by $\|A\|=\sup |A x|$, where $|\cdot|$ is the norm (or

$$
|x|=1
$$

modulus) in $\mathbb{R}^{n}$.

- One can consider the partial sums of operators $A_{m}=\sum_{k=0}^{m} t^{k} \frac{A^{k}}{k!}$ and $\left\|A_{m}\right\| \leq e^{\|A\| T}, 0 \leq t \leq T$ and prove that $A_{m}$ converges to a linear operator from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose matrix representation is denoted by $e^{t A}$.


## Definition of

- Given a matrix $A$, it can be viewed as a linear operator $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose norm is given by $\|A\|=\sup |A x|$, where $|\cdot|$ is the norm (or

$$
|x|=1
$$

modulus) in $\mathbb{R}^{n}$.

- One can consider the partial sums of operators $A_{m}=\sum_{k=0}^{m} t^{k} \frac{A^{k}}{k!}$ and $\left\|A_{m}\right\| \leq e^{\|A\| T}, 0 \leq t \leq T$ and prove that $A_{m}$ converges to a linear operator from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose matrix representation is denoted by $e^{t A}$.
- In other words, $e^{t A}=\sum_{k=0}^{\infty} t^{k} \frac{A^{k}}{k!}$.


## Definition of

- Given a matrix $A$, it can be viewed as a linear operator $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose norm is given by $\|A\|=\sup |A x|$, where $|\cdot|$ is the norm (or

$$
|x|=1
$$

modulus) in $\mathbb{R}^{n}$.

- One can consider the partial sums of operators $A_{m}=\sum_{k=0}^{m} t^{k} \frac{A^{k}}{k!}$ and $\left\|A_{m}\right\| \leq e^{\|A\| T}, 0 \leq t \leq T$ and prove that $A_{m}$ converges to a linear operator from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose matrix representation is denoted by $e^{t A}$.
- In other words, $e^{t A}=\sum_{k=0}^{\infty} t^{k} \frac{A^{k}}{k!}$.
- Exercise Compute $\frac{d}{d t}\left(e^{\left(t-t_{0}\right) A} x_{0}\right)$, justify and show that $x(t)=e^{\left(t-t_{0}\right) A} x_{0}$ is a solution to the system $\dot{x}(t)=A x(t), x\left(t_{0}\right)=x_{0}$. Further, directly show that it is the unique solutions • $\bar{\equiv}$, $\bar{\equiv}$, $\bar{\equiv}$.
ODE: Stability Theory
BITS-Pilani, Goa Campus, Nov. 12, 2022
(D) A.K.N/IISc
$7 / 31$


## Computation of in Special Cases

- Even the solution has explicit representation as $x(t)=e^{t A} x_{0}$, the computation of $e^{t A}$ is not easy and in fact, it does not reveal anything about the behaviour of trajectories. This is more interesting in application than a mere representation.


## Computation of in Special Cases

- Even the solution has explicit representation as $x(t)=e^{t A} x_{0}$, the computation of $e^{t A}$ is not easy and in fact, it does not reveal anything about the behaviour of trajectories. This is more interesting in application than a mere representation.
- If $A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right)$ is a diagonal matrix, then

$$
e^{A}=\operatorname{diag}\left(e^{\lambda_{1}}, e^{\lambda_{2}}, \ldots e^{\lambda_{n}}\right)
$$

is again a diagonal matrix.

## Computation of in Special Cases

- Even the solution has explicit representation as $x(t)=e^{t A} x_{0}$, the computation of $e^{t A}$ is not easy and in fact, it does not reveal anything about the behaviour of trajectories. This is more interesting in application than a mere representation.
- If $A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right)$ is a diagonal matrix, then

$$
e^{A}=\operatorname{diag}\left(e^{\lambda_{1}}, e^{\lambda_{2}}, \ldots e^{\lambda_{n}}\right)
$$

is again a diagonal matrix.

- (Similarity) Suppose $C=P A P^{-1}$ for some invertible $P$, Then $e^{C}=P e^{A} P^{-1}$. In particular, if $C$ is diagonalizable, that is $C=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right)$, then

$$
e^{A}=e^{P^{-1} C P}=P^{-1} e^{C} P=P^{-1} \operatorname{diag}\left(e^{\lambda_{1}}, e^{\lambda_{2}}, \ldots e^{\lambda_{n}}\right) P
$$

## Diagonalizability

- Thus the aim is to see whether a given matrix $A$ can be diagonalized?


## Diagonalizability

- Thus the aim is to see whether a given matrix $A$ can be diagonalized?
- Under the similarity transformation, one convert the ODE $\dot{x}(t)=A x(t)$ to a system $\dot{y}(t)=C y(t)$ by a suitable linear transformation. The interesting point is that the qualitative behaviour of the two trajectories will be similar.


## Diagonalizability

- Thus the aim is to see whether a given matrix $A$ can be diagonalized?
- Under the similarity transformation, one convert the ODE $\dot{x}(t)=A x(t)$ to a system $\dot{y}(t)=C y(t)$ by a suitable linear transformation. The interesting point is that the qualitative behaviour of the two trajectories will be similar.
- In particular, if $C$ is diagonal, the behaviour of $y$ can be easily derived


## Diagonalizability

- Thus the aim is to see whether a given matrix $A$ can be diagonalized?
- Under the similarity transformation, one convert the ODE $\dot{x}(t)=A x(t)$ to a system $\dot{y}(t)=C y(t)$ by a suitable linear transformation. The interesting point is that the qualitative behaviour of the two trajectories will be similar.
- In particular, if $C$ is diagonal, the behaviour of $y$ can be easily derived
- In general, $A$ need not be diagonalizable and it depends on the eigenvalues and eigenvectors. Hence the study of linear algebra.


## Diagonalizability

- Thus the aim is to see whether a given matrix $A$ can be diagonalized?
- Under the similarity transformation, one convert the ODE $\dot{x}(t)=A x(t)$ to a system $\dot{y}(t)=C y(t)$ by a suitable linear transformation. The interesting point is that the qualitative behaviour of the two trajectories will be similar.
- In particular, if $C$ is diagonal, the behaviour of $y$ can be easily derived
- In general, $A$ need not be diagonalizable and it depends on the eigenvalues and eigenvectors. Hence the study of linear algebra.
- If $A$ not diagonalizable, then what? Jordan decomposition


## Decomposition of systems

- In general Jordan decomposition in higher dimensions is hard to understand, but for $2 \times 2$ systems, it is easy.


## Decomposition of systems

- In general Jordan decomposition in higher dimensions is hard to understand, but for $2 \times 2$ systems, it is easy.
- Every $2 \times 2$ system $\dot{x}=A x, x(0)=x_{0}$ is linearly equivalent to one of the three cases:

$$
\text { (C1) } B=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right], \quad(C 2) C=\left[\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right], \quad(C 3) D=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

## Decomposition of systems

- In general Jordan decomposition in higher dimensions is hard to understand, but for $2 \times 2$ systems, it is easy.
- Every $2 \times 2$ system $\dot{x}=A x, x(0)=x_{0}$ is linearly equivalent to one of the three cases:

$$
(C 1) \quad B=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right], \quad(C 2) C=\left[\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right], \quad(C 3) D=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

- ( $C 1$ ) if $A$ has real eigenvalues (need not be distinct), but with two independent eigenvectors


## Decomposition of

- In general Jordan decomposition in higher dimensions is hard to understand, but for $2 \times 2$ systems, it is easy.
- Every $2 \times 2$ system $\dot{x}=A x, x(0)=x_{0}$ is linearly equivalent to one of the three cases:

$$
(C 1) \quad B=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right], \quad(C 2) C=\left[\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right], \quad(C 3) D=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

- ( $C 1$ ) if $A$ has real eigenvalues (need not be distinct), but with two independent eigenvectors
- (C2) if $A$ has a double real eigenvalue with only one independent eigenvector


## Decomposition of

## systems

- In general Jordan decomposition in higher dimensions is hard to understand, but for $2 \times 2$ systems, it is easy.
- Every $2 \times 2$ system $\dot{x}=A x, x(0)=x_{0}$ is linearly equivalent to one of the three cases:

$$
\text { (C1) } B=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right], \quad(C 2) C=\left[\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right], \quad(C 3) D=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

- ( $C 1$ ) if $A$ has real eigenvalues (need not be distinct), but with two independent eigenvectors
- (C2) if $A$ has a double real eigenvalue with only one independent eigenvector
- $(C 3)$ if $A$ has two complex eigenvalues $a+i b$ and $a-i b$.


## Exponential of the Special matrices

- One can compute the exponential of the above matrices easily as

$$
e^{B}=\left[\begin{array}{cc}
e^{\lambda} & 0 \\
0 & e^{\mu}
\end{array}\right], \quad e^{C}=e^{\lambda}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], e^{D}=e^{a}\left[\begin{array}{cc}
\cos (b) & -\sin (b) \\
\sin (b) & \cos (b) .
\end{array}\right]
$$

## Exponential of the Special matrices

- One can compute the exponential of the above matrices easily as

$$
e^{B}=\left[\begin{array}{cc}
e^{\lambda} & 0 \\
0 & e^{\mu}
\end{array}\right], \quad e^{C}=e^{\lambda}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad e^{D}=e^{a}\left[\begin{array}{cc}
\cos (b) & -\sin (b) \\
\sin (b) & \cos (b) .
\end{array}\right]
$$

- This will allow us to write $e^{t B}, e^{t C}$ and $e^{t D}$ and hence the solutions to the differential systems corresponding to the above class of matrices $e^{t B} x_{0}, e^{t C} x_{0}$ and $e^{t D} x_{0}$


## Exponential of the Special matrices

- One can compute the exponential of the above matrices easily as

$$
e^{B}=\left[\begin{array}{cc}
e^{\lambda} & 0 \\
0 & e^{\mu}
\end{array}\right], \quad e^{C}=e^{\lambda}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad e^{D}=e^{a}\left[\begin{array}{cc}
\cos (b) & -\sin (b) \\
\sin (b) & \cos (b) .
\end{array}\right]
$$

- This will allow us to write $e^{t B}, e^{t C}$ and $e^{t D}$ and hence the solutions to the differential systems corresponding to the above class of matrices $e^{t B} x_{0}, e^{t C} x_{0}$ and $e^{t D} x_{0}$
- We have

$$
e^{t B}=\left[\begin{array}{cc}
e^{t \lambda} & 0 \\
0 & e^{t \mu}
\end{array}\right], e^{t C}=e^{t \lambda}\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right], e^{t D}=e^{t a}\left[\begin{array}{cc}
\cos (t b) & -\sin (t b) \\
\sin (t b) & \cos (t b) .
\end{array}\right]
$$

## Qualitative Analysis: Phase Plane and Phase Portrait

- We will understand the stability for the above special systems. This is enough.


## Qualitative Analysis: Phase Plane and Phase Portrait

- We will understand the stability for the above special systems. This is enough.
- Consider the system (decoupled)

$$
\begin{equation*}
\dot{x_{1}}=-x_{1}, \dot{x_{2}}=2 x_{2}, x_{1}(0)=x_{01}, x_{2}(0)=x_{02} \tag{3}
\end{equation*}
$$

## Qualitative Analysis: Phase Plane and Phase Portrait

- We will understand the stability for the above special systems. This is enough.
- Consider the system (decoupled)

$$
\begin{equation*}
\dot{x_{1}}=-x_{1}, \dot{x_{2}}=2 x_{2}, x_{1}(0)=x_{01}, x_{2}(0)=x_{02} \tag{3}
\end{equation*}
$$

- The solution is given by $x(t)=\left[\begin{array}{cc}e^{-t} & 0 \\ 0 & e^{2 t}\end{array}\right] x_{0}$.


## Qualitative Analysis: Phase Plane and Phase Portrait

- We will understand the stability for the above special systems. This is enough.
- Consider the system (decoupled)

$$
\begin{equation*}
\dot{x_{1}}=-x_{1}, \dot{x_{2}}=2 x_{2}, x_{1}(0)=x_{01}, x_{2}(0)=x_{02} \tag{3}
\end{equation*}
$$

- The solution is given by $x(t)=\left[\begin{array}{cc}e^{-t} & 0 \\ 0 & e^{2 t}\end{array}\right] x_{0}$.
- From a dynamic system point of view $x(t)$ describes the motion of a particle in $x_{1} x_{2}$-plane which we refer as phase plane and $t$ is treated as time. At $t=0$, the particle is at $x_{0}$ and particle moves to $x(t)$ at time $t$.


## Qualitative Analysis: Phase Plane and Phase Portrait

- We will understand the stability for the above special systems. This is enough.
- Consider the system (decoupled)

$$
\begin{equation*}
\dot{x_{1}}=-x_{1}, \dot{x_{2}}=2 x_{2}, x_{1}(0)=x_{01}, x_{2}(0)=x_{02} \tag{3}
\end{equation*}
$$

- The solution is given by $x(t)=\left[\begin{array}{cc}e^{-t} & 0 \\ 0 & e^{2 t}\end{array}\right] x_{0}$.
- From a dynamic system point of view $x(t)$ describes the motion of a particle in $x_{1} x_{2}$-plane which we refer as phase plane and $t$ is treated as time. At $t=0$, the particle is at $x_{0}$ and particle moves to $x(t)$ at time $t$.
- The representation of all solution curves in the phase plane (called phase space in higher dimensions) $\mathbb{R}^{n}$ is known as phase portrait.


## Saddle point equilibrium

- The following figure gives the various trajectories of the particle under motion, where the arrow represents the direction of motion.


Figure: Saddle Point Equilibrium

## Saddle point equilibrium

- The following figure gives the various trajectories of the particle under motion, where the arrow represents the direction of motion.


Figure: Saddle Point Equilibrium

- This is the feature of any system of the form (C1) with different signs for $\lambda$ and $\mu$ except that the direction of arrows might change.


## Dynamical System, Flow and Vector Field

- Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.


## Dynamical System, Flow and Vector Field

- Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.
- If we are viewing a second order equation as a first order system, then phase plane is the plane consisting of axes which represents position $x_{1}=x(t)$ and velocity $x_{2}=\dot{x}(t)$.


## Dynamical System, Flow and Vector Field

- Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.
- If we are viewing a second order equation as a first order system, then phase plane is the plane consisting of axes which represents position $x_{1}=x(t)$ and velocity $x_{2}=\dot{x}(t)$.
- Thus a dynamical system is a mapping $\Phi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by the solution $x\left(t, x_{0}\right)$, that is $\Phi\left(t, x_{0}\right)=x\left(t, x_{0}\right)$.


## Dynamical System, Flow and Vector Field

- Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.
- If we are viewing a second order equation as a first order system, then phase plane is the plane consisting of axes which represents position $x_{1}=x(t)$ and velocity $x_{2}=\dot{x}(t)$.
- Thus a dynamical system is a mapping $\Phi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by the solution $x\left(t, x_{0}\right)$, that is $\Phi\left(t, x_{0}\right)=x\left(t, x_{0}\right)$.
- On the other hand, the collection $\left\{\phi_{t}=e^{t A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, t \in \mathbb{R}\right\}$ is called the flow of the linear system. The flow $\phi_{t}$ can be viewed as the motion of all the points in the set. This notion is important in understanding the motion of particles in a neighborhood like in in fluid flows.


## Dynamical System, Flow and Vector Field

- Geometrically, the dynamical system describes the motion of the particle in the phase space along the solution curves.
- If we are viewing a second order equation as a first order system, then phase plane is the plane consisting of axes which represents position $x_{1}=x(t)$ and velocity $x_{2}=\dot{x}(t)$.
- Thus a dynamical system is a mapping $\Phi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by the solution $x\left(t, x_{0}\right)$, that is $\Phi\left(t, x_{0}\right)=x\left(t, x_{0}\right)$.
- On the other hand, the collection $\left\{\phi_{t}=e^{t A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, t \in \mathbb{R}\right\}$ is called the flow of the linear system. The flow $\phi_{t}$ can be viewed as the motion of all the points in the set. This notion is important in understanding the motion of particles in a neighborhood like in in fluid flows.
- Another notion is a vector field $(x, A x)$


## Equilibrium Points

- For a general system $\dot{x}=f(t, x)$, a point $x_{0}$ is called an equilibrium point if $f\left(t, x_{0}\right)=0$. It is an equilibrium in sense that $x(t) \equiv x_{0}$ is a solution to the ODE system which starts at $x_{0}$.


## Equilibrium Points

- For a general system $\dot{x}=f(t, x)$, a point $x_{0}$ is called an equilibrium point if $f\left(t, x_{0}\right)=0$. It is an equilibrium in sense that $x(t) \equiv x_{0}$ is a solution to the ODE system which starts at $x_{0}$.
- A nonlinear system may not have equilibrium points. However, for a linear autonomous system, that is $f=A x$, the origin is always an equilibrium point. In fact the set of all equilibrium points are given by $\operatorname{Ker}(A)$


## Equilibrium Points

- For a general system $\dot{x}=f(t, x)$, a point $x_{0}$ is called an equilibrium point if $f\left(t, x_{0}\right)=0$. It is an equilibrium in sense that $x(t) \equiv x_{0}$ is a solution to the ODE system which starts at $x_{0}$.
- A nonlinear system may not have equilibrium points. However, for a linear autonomous system, that is $f=A x$, the origin is always an equilibrium point. In fact the set of all equilibrium points are given by $\operatorname{Ker}(A)$
- If $A$ is invertible, equivalently all the eigenvalues are non-zero, then 0 is the only equilibrium point. Otherwise, $\operatorname{Ker}(A)$ has dimension 1 or 2.


## Equilibrium Points

- For a general system $\dot{x}=f(t, x)$, a point $x_{0}$ is called an equilibrium point if $f\left(t, x_{0}\right)=0$. It is an equilibrium in sense that $x(t) \equiv x_{0}$ is a solution to the ODE system which starts at $x_{0}$.
- A nonlinear system may not have equilibrium points. However, for a linear autonomous system, that is $f=A x$, the origin is always an equilibrium point. In fact the set of all equilibrium points are given by $\operatorname{Ker}(A)$
- If $A$ is invertible, equivalently all the eigenvalues are non-zero, then 0 is the only equilibrium point. Otherwise, $\operatorname{Ker}(A)$ has dimension 1 or 2.
- Now we move on to study $2 \times 2$ systems and it is easy to have complete analysis as there are only two eigenvalues.


## Equilibrium: Node; Case

- We consider the case of (C1), but same sign for $\lambda$ and $\mu$. For, take $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. Then the solution is given by
$x_{1}(t)=x_{01} e^{2 t}, x_{2}(t)=x_{02} e^{t}$. Eliminating $t$, we will get $x_{1}=c x_{2}^{2}$.


## Equilibrium: Node; Case

- We consider the case of (C1), but same sign for $\lambda$ and $\mu$. For, take $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. Then the solution is given by
$x_{1}(t)=x_{01} e^{2 t}, x_{2}(t)=x_{02} e^{t}$. Eliminating $t$, we will get $x_{1}=c x_{2}^{2}$.




## Equilibrium: Node; Case

- We consider the case of (C1), but same sign for $\lambda$ and $\mu$. For, take $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. Then the solution is given by
$x_{1}(t)=x_{01} e^{2 t}, x_{2}(t)=x_{02} e^{t}$. Eliminating $t$, we will get $x_{1}=c x_{2}^{2}$.




## Equilibrium: Node, Case

- Consider the system with $C=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]$, that is $\dot{x_{1}}=\lambda x_{1}+x_{2}, \dot{x_{2}}=\lambda x_{2}$. The solution (phase portrait is depicted below) is

$$
x_{1}(t)=\left(x_{01}+x_{02} t\right) e^{t \lambda}, x_{2}(t)=x_{02} e^{t \lambda}
$$

## Equilibrium: Node, Case

- Consider the system with $C=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]$, that is $\dot{x_{1}}=\lambda x_{1}+x_{2}, \dot{x_{2}}=\lambda x_{2}$. The solution (phase portrait is depicted below) is

$$
x_{1}(t)=\left(x_{01}+x_{02} t\right) e^{t \lambda}, x_{2}(t)=x_{02} e^{t \lambda}
$$


(a) Untable Node

(b) Stable Node

## Equilibrium: Focus, Case

- Consider the system

$$
\dot{x_{1}}=a x_{1}-b x_{2}, \dot{x_{2}}=b x_{1}+a x_{2}
$$

## Equilibrium: Focus, Case

- Consider the system

$$
\dot{x_{1}}=a x_{1}-b x_{2}, \dot{x_{2}}=b x_{1}+a x_{2}
$$

- Thus $A=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ and the solution is

$$
x(t)=e^{a t}\left[\begin{array}{cc}
\cos (b t) & -\sin (b t) \\
\sin (b t) & \cos (b t)
\end{array}\right] x_{0}
$$

## Equilibrium: Focus, Case

- Consider the system

$$
\dot{x_{1}}=a x_{1}-b x_{2}, \dot{x_{2}}=b x_{1}+a x_{2}
$$

- Thus $A=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ and the solution is

$$
x(t)=e^{a t}\left[\begin{array}{cc}
\cos (b t) & -\sin (b t) \\
\sin (b t) & \cos (b t)
\end{array}\right] x_{0}
$$

- Indeed $\operatorname{sign}(a)$ will determine the stability, whereas the matrix components causes the periodicity with $\operatorname{sign}(b)$ determining the orientation. The phase portrait with $a \neq 0$ and $a=0$ are given below.


## Equilibrium: Unstable Focus, Case with

- The solution goes to infinity from any initial value rotating around the origin.


Figure: Unstable Focus

## Equilibrium: Stable Focus, Case with

- The solution goes to 0 from any initial value rotating around the origin.


Figure: Stable Focus

## Equilibrium: Center, Case with

- Pure periodic rotations in the case of pure imaginary eigenvalues.


$$
a=0, b<0
$$



$$
a=0, b>0
$$

Figure: Centre

## Degenerate Case; with Eigenvalue

- So far we have analyzed the situation when there are no 0 eigenvalues. When the matrix $A$ has 0 eigenvalue, then the equation $A x=0$ will have more than one non-trivial solution which will be one or two dimensional subspace.


## Degenerate Case; with Eigenvalue

- So far we have analyzed the situation when there are no 0 eigenvalues. When the matrix $A$ has 0 eigenvalue, then the equation $A x=0$ will have more than one non-trivial solution which will be one or two dimensional subspace.
- Each of these non-trivial solution will be an equilibrium point


## Degenerate Case; with Eigenvalue

- So far we have analyzed the situation when there are no 0 eigenvalues. When the matrix $A$ has 0 eigenvalue, then the equation $A x=0$ will have more than one non-trivial solution which will be one or two dimensional subspace.
- Each of these non-trivial solution will be an equilibrium point
- Consider the case $A=\left[\begin{array}{cc}0 & 0 \\ 0 & -2\end{array}\right]$, then $x_{1}(t)=x_{01}, x_{2}(t)=x_{02} e^{-2 t}$. In this degenerate case, all the points on the $x_{1}$-axis are equilibrium points. (A point $x_{0}$ is called an equilibrium point of the dynamical system $\dot{x}=f(x)$ if $f\left(x_{0}\right)=0$.)


## Degenerate Case; with Eigenvalue



Figure: Degenerate Case

## General Theorem

- Two matrices $A$ and $B$ are said to be linearly equivalent if there is an invertible matrix $P$ such that $B=P^{-1} A P$ or $A=P B P^{-1}$.


## General Theorem

- Two matrices $A$ and $B$ are said to be linearly equivalent if there is an invertible matrix $P$ such that $B=P^{-1} A P$ or $A=P B P^{-1}$.
In this case, one can obtain the solution of the system $\dot{x}=A x$ from the solution of the system $\dot{y}=B y$ and vice-versa as follows:


## General Theorem

- Two matrices $A$ and $B$ are said to be linearly equivalent if there is an invertible matrix $P$ such that $B=P^{-1} A P$ or $A=P B P^{-1}$.
In this case, one can obtain the solution of the system $\dot{x}=A x$ from the solution of the system $\dot{y}=B y$ and vice-versa as follows:
- We have

$$
\dot{x}=A x \Rightarrow \dot{x}=P B P^{-1} x, x(0)=x_{0}
$$

Put $y(t)=P^{-1} x(t)$, then $y$ satisfies

$$
\dot{y}(t)=B y(t), y(0)=P^{-1} x_{0}
$$

## General Theorem

- Two matrices $A$ and $B$ are said to be linearly equivalent if there is an invertible matrix $P$ such that $B=P^{-1} A P$ or $A=P B P^{-1}$.
In this case, one can obtain the solution of the system $\dot{x}=A x$ from the solution of the system $\dot{y}=B y$ and vice-versa as follows:
- We have

$$
\dot{x}=A x \Rightarrow \dot{x}=P B P^{-1} x, x(0)=x_{0}
$$

Put $y(t)=P^{-1} x(t)$, then $y$ satisfies

$$
\dot{y}(t)=B y(t), y(0)=P^{-1} x_{0}
$$

- Thus the solution $x$ is given by

$$
x(t)=P y(t)=P e^{B t} y_{0}=P e^{B t} P^{-1} x_{0} .
$$

## General Theorems, Conti...

- For a $2 \times 2$ system, the general Jordan form gives the following theorem.


## Theorem

Given a $2 \times 2$ matrix A, there is an invertible matrix $P$ such that $A=P B P^{-1}$ and $B$ takes one of the forms of $(C 1),(C 2)$ or $(C 3)$.

General Theorems, Conti...

- For a $2 \times 2$ system, the general Jordan form gives the following theorem.


## Theorem

Given a $2 \times 2$ matrix $A$, there is an invertible matrix $P$ such that $A=P B P^{-1}$ and $B$ takes one of the forms of $(C 1),(C 2)$ or $(C 3)$.

## Remark

The stability and nature of the solution trajectories do not change under linear equivalence.

## Linear Equivalence

## Definition

A linear system (3) is said to have a saddle, a node, a focus or a center at the origin, respectively, if the matrix linearly equivalent to

$$
\begin{gathered}
\text { (I) } B_{1}=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right], \lambda \mu<0 \\
(I I) B_{1}, \lambda \mu>0 \\
\text { or } B_{2}=\left[\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right], \lambda \neq 0 \\
(I I I) B_{3}=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right], \text { with } a \neq 0, b \neq 0 \\
\text { (IV) } B_{4}=\left[\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right], b \neq 0
\end{gathered}
$$

## Bifurcation Diagram

- A schematic representation (Bifurcation diagram) is shown below connecting the determinant and trace of $A$. Let $\delta=\operatorname{det}(A)$, $\tau=\operatorname{trace}(A)$ and $\Delta=\tau^{2}-4 \delta$


Figure: Bifurcation Diagram
ODE: Stability Theory
BITS-Pilani, Goa Campus, Nov. 12, 2022
(1) A.K.N/IISc

## An Example

- Consider the system

$$
\dot{x_{1}}=-x_{1}-3 x_{2}, \quad \dot{x_{2}}=2 x_{2}
$$

The matrix $A=\left[\begin{array}{cc}-1 & -3 \\ 0 & 2\end{array}\right]$ has eigenvalues $\lambda_{1}=-1, \lambda_{2}=2$ with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

## An Example

- Consider the system

$$
\dot{x_{1}}=-x_{1}-3 x_{2}, \quad \dot{x_{2}}=2 x_{2}
$$

The matrix $A=\left[\begin{array}{cc}-1 & -3 \\ 0 & 2\end{array}\right]$ has eigenvalues $\lambda_{1}=-1, \lambda_{2}=2$ with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

- Hence $P=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ and $P^{-1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.


## An Example

- Consider the system

$$
\dot{x_{1}}=-x_{1}-3 x_{2}, \quad \dot{x_{2}}=2 x_{2}
$$

The matrix $A=\left[\begin{array}{cc}-1 & -3 \\ 0 & 2\end{array}\right]$ has eigenvalues $\lambda_{1}=-1, \lambda_{2}=2$ with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

- Hence $P=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ and $P^{-1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
- Further $B=P^{-1} A P=\left[\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right] \Rightarrow \dot{y_{1}}=-y_{1}, \dot{y_{2}}=2 y_{2}$, which gives a diagonal system equivalent to the given system. Note that the stability do not change. Moreover, since it is a linear correspondence, the $x$ and $y$ axes will corresponds to lines passing through the origin.


## An Example, Conti...

- The phase portrait can be depicted as follows.



## Higher Dimensional Systems

- When the eigenvalues of $A$ are distinct, then analysis and the representation of the solution is quite straight forward.


## Higher Dimensional Systems

- When the eigenvalues of $A$ are distinct, then analysis and the representation of the solution is quite straight forward.
- In general, one can appeal to the Jordan decomposition which decomposition using the eigenvalues. One need to classify eigenvalues with negative real part, 0 real part and positive real part to obtain subspaces $\mathbb{R}^{n}$ which are stable, center and unstable. The stable and unstable subspaces are invariant under the flow.



Video Course (ODE): http://nptel.ac.in/courses/111108081/
Video Course (PDE-1):
https://nptel.ac.in/courses/111/108/111108144/
Video Course (PDE-2):
https://nptel.ac.in/courses/111/108/111108152/

