
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 16, Number 4, 2013, 373–392

Distributed Scheduling on Utility Grids

Sunita BANSAL1, Chittaranjan HOTA2

1Birla Institute of Technology & Science, Pilani
Dept. of Computer Science & Information Systems
Pilani Campus, Pilani, Rajasthan, 333031, INDIA

E-mail: sunita bansal@pilani.bits-pilani.ac.in

2Birla Institute of Technology & Science, Pilani
Dept. of Computer Science & Information Systems

Hyderabad Campus, Hyderabad, AP, 500078, INDIA

E-mail: hota@hyderabad.bits-pilani.ac.in

Abstract. Grid computing aggregates the power of widely distributed re-

sources and provides non-trivial services to the users. Resource management and

scheduling play a crucial role in Grid computing environment. It becomes more

challenging in Utility Grids, where consumer wants to pay minimum amount and

providers want to earn maximum amount. Many existing scheduling approaches

are dedicated to either single criterion or multi-criteria. Existing multi-criteria

systems give weight to each criterion according to its relative importance. Users

need not worry about the choice of these criteria. These algorithms are less

efficient in terms of time complexity and memory utilization. In this paper, we

propose an efficient distributed scheduling algorithm on Utility Grids based on

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). We

have introduced a new parameter called Processing Element (PE) weight. The

objective of this parameter is to select the resource that carves out smallest

possible free PE cluster that satisfies the user requirements. User and system

defined weights are used to select resource and evaluate the performance of the

algorithm. The GridSim toolkit with standard workload model is used to sim-

ulate the Grid environment. The simulation results show that our algorithms

perform better over existing approaches in terms of user satisfaction and number

of application failures.

Key words: Cost-time, Failure, Parallel Applications, TOPSIS, Utility

Grids.

374 S. Bansal, C. Hota

1. Introduction

Due to advances in wide-area network technologies and low cost of computing
resources, Grid computing [1] has established itself as an active research area. One of
the motivational factors for Grid computing is to aggregate the capabilities of widely
distributed resources and to provide non trivial service to users. A computational
Grid is a hardware and software infrastructure that provides dependable, consistent,
pervasive and inexpensive access to high-end computational capabilities.

The key technologies that affect the Grid efficiency involve the Grid resource
allocation and management. The goal of computational Grid is to utilize all available
free computational resources to overcome difficulties brought about by complicated
tasks with enormous computing workloads. One of the current research problems is
to devise new and efficient methods for resource management.

A number of resource management approaches have been proposed in various Grid
projects. Resource management in a Grid environment is done by either centralized
or distributed manner. In centralized approach, a centralized broker manages and
schedules all the jobs submitted to the Grid, whereas a distributed broker typically
handles jobs submitted by a single user only. Centralized broker is able to produce
optimal schedules as they have full knowledge of the jobs and resources, but such a
scheduler can face a performance bottleneck problem. Distributed broker architecture,
on the other hand, scales well and makes the Grid more fault-tolerant, but the partial
information is available for each instance as the broker complicates the scheduling
decisions. Grid resource management systems employing centralized broker include
Condor [2]. Distributed brokers are carried out by AppLeS [4] and Net Solve [5].

In this paper we introduce two resource broker scheduling algorithms namely Econ-
omy Minimum Execution Time (EMET) and Economy Minimum Completion Time
(EMCT).

The new scheduling algorithm is concerned with the current situation in which user
has to pay-per-use like Cloud and Utility computing. Cloud and Utility computing
have different pricing methods like auction, bid and commodity market. We have
chosen commodity market where prices are fixed for all commodity. User objective
is to get the job completed in least time, at least cost; service provider’s objective is
to generate maximum revenue. It becomes hard because the resource that provides
better efficiency are more expensive. Resource broker has to select the resources that
satisfy the user requirement.

Our main contributions are as follows: First, we have modeled parallel application
on the Utility Grids where user requires more than one Processing Element (PE) to
execute the application. Second, we take cost and time weight from the user. Weight
is used to select a resource and also to measure user benefit. Third, new parameter
called Processing Element (PE) weight is introduced. The objective of this parameter
is to select the resource that carved out smallest possible free PE cluster that satisfy
the user requirements. It does not occupy large free PE cluster that might later satisfy
large requests from applications.

The outline of this paper is organized as follows. Section 2 reviews related work
on task scheduling in a heterogeneous computing environment. Section 3 formulates

Distributed Scheduling on Utility Grids 375

the system model. Section 4 describes our proposed scheduling algorithm for Utility
Grids. Simulation and evaluation of our approach is presented in Section 5. Section 6
discusses the conclusion and future work.

2. Related Work

Braun et al. [6] studied various online scheduling algorithms. Opportunistic Load
Balancing (OLB) algorithm assigns the task to a machine which is expected to be
available first without considering the expected execution time. Aim of this strategy
is to keep all machines as productive as possible. Minimum Execution Time (MET)
scheduling algorithm assigns the task to a machine that takes the minimum execution
time among all the available machines. Purpose of this approach is to assign the
task to the best machine. Minimum Completion Time (MCT) scheduling algorithm
assigns the task to a machine which would complete the task at the earliest, so that
all the machines are busy and makespan time is less. Kumar et al. [11] introduced
Modified Minimum Completion Time (Modified MCT) task scheduling algorithm.
They divided the jobs into three categories short, medium and long. Short jobs are
assigned using OLB method and other jobs are assigned using the MCT method to
take advantage of resource utilization and makespan time.

Buyya et al. [7] developed various cost, time optimization greedy algorithms for
parameter sweep applications. These algorithms optimize either cost or time. Garg
et al. [3] introduced MinCTT, MaxCTT, and sufferageCTT. All these algorithms
work on economy Grid where cost and time are minimized simultaneously. Ang et
al. [9] proposed a new cost and time balancing algorithm. They have defined a new
parameter urgency of the task, based on deadline. Resources are divided into two
groups concerning average cost. Tasks that have more weight of cost are assigned to
cost optimization resource group and vice versa.

Our work is different from others as we have considered the online jobs instead of
batch jobs, and used the TOPSIS [12] to select resource instead of cost time trade-
off matrix. Researchers [10], [23], [24] have proposed two phase scheduling heuristic;
first phase assigns the tasks using min-min [6] scheduling algorithm and the second
phase reallocates tasks from one machine to the other machine in order to reduce the
makespan time.

He et al. [18] introduced a QoS guided Min-min heuristic. It classifies the tasks
based on the bandwidth requirement. The high bandwidth requirement tasks are
assigned first using Min-min heuristic [6]. Carsten et al. [17] developed scheduling
algorithms on economic Grid because back fill [19] scheduling algorithm does not con-
sider the cost of the task and a task can suffer from starvation problem. Researchers
in [16], [26], [25] have developed static mapping heuristics for Quality of Service (QoS)
guarantees. They have considered various QoS parameters like time, reliability, se-
curity, version and priority of the task. Tasks are assigned based on utility which
is calculated on the basis of the QoS. The efficiency of this approach is evaluated in
terms of response time and wait-time.

Besides, there are also some metaheuristic approaches, such as Genetic Algorithms

376 S. Bansal, C. Hota

(GAs) [27], Simulated Annealing (SA) [28], and Genetic Simulated Annealing (GSA)
[27]. In general, metaheuristic approaches manage to obtain much better performance,
but take a longer execution time.

Deb et al. [20] have developed various multi-objective optimization genetic algo-
rithms. Non-dominating Sorting Genetic Algorithm (NSGA) [20] have introduced a
crowded comparison operator to measure density of population. That operator is less
complex and does not require user defined sharing parameter. Chitra et al. [22] have
developed weighted multi-objective scheduling algorithm on workflow Grid schedul-
ing. They have used simple neighbor search algorithm for local search. Metaheuristic
approach finds number of combinations of tasks and resources whereas our approach
finds the best resource available as soon as an application arrives into the system.

3. System Model

The four layers of Grid architecture shown in Fig. 1 consists of the following
entities:

Fig. 1. Grid model.

Service Providers: Service providers are resource owners, including clusters,
servers, and supercomputers. They are responsible for executing Grid user appli-
cation. Resource provider provides static information to Grid Information Server
(GIS). Static information includes CPU speed in terms of Million Instructions Per
Second (MIPS), operating system, the number of PEs, and usage cost per second and
resources architecture.

Users: Users have to be registered with GIS and submit their applications to
the resource broker for execution on Grid. They also supply information on the QoS
parameters.

Distributed Scheduling on Utility Grids 377

Resource-Broker: Resource broker schedules applications to the resource provider.
It collects the resources information from the GIS.

Grid Information Server: A GIS contains information about all available Grid
resources with their computing capacity and cost at which they offer their services to
Grid users.

This paper assumes that all the participants trust and benefit one another by
cooperating with one another. It is assumed that service price does not change during
the scheduling of applications. We assume an application requires fixed number of
PEs and an application cannot be executed until all the required PEs are available
simultaneously.

4. Distributed Scheduling Algorithm

We first modeled the applications as parallel applications where the user requires
more than one computing elements. We applied EMCT scheduling algorithm to select
the resources which selects the resources on the basis of user’s requirements. User’s
requirements are expressed in terms of weight. To solve this multi-criterion scheduling
problem, we used the well known TOPSIS [12] algorithm.

4.1. Problem Statement

Our algorithms consider a Grid environment that consisting a set of resource
providers R = {rj, rj+1 ... , rm}, each resource’s available time-slots TS = {tk,
tk+1, . . . , tp}., and a set of Parallel applications A = {ai, ai+1, . . . , an}.
Each application is characterized by ai = (ali, api, adi, asi, aηi, aδi) where ali is
application length in number of instructions that can be estimated on dedicated and
non dedicated clusters using [13], [14], [15], api is the application required processing
elements (PE), adi is application input data in bits, asi is the application submission
time, aηi and aδi are the application time and cost weight respectively.

Each resource characteristic is defined by ri = (rcj, rsj, rpj, rbj, rtj). The first
three parameters are static and others are dynamic. The rcj is resource processing cost
per second, rsj represents resource computational power in terms million instructions
per second (MIPS) of one PE, rpj is resource PE, rbj is resource bandwidth that
changes periodically, rtj is the list of available time-slots. Time-slot is characterized
by tsk = (tsk, tfk, tpk) where tsk is start time of time slot, tf k is finish time of time
slot and tpk available PE of time slot. We assume that application ai cannot be
executed until all the required pei are available simultaneously. Let m be the total
number of resource providers available, for the application ai and γi be PE weight
that should be defined by the system. The notations used in the paper are described
in Table 1.

A lower bound of cost and time of all successful applications can be calculated
as minimum cost and minimum time. Value of cost is minimum when application
is scheduled on cheapest resources. Value of time is minimum when application is
scheduled on fastest resources. Execution time of application ai on resource provider

378 S. Bansal, C. Hota

rj is given by:

Ψij =
ali
rsj

. (1)

Response time of application ai on resource provider rj is given by:

αij = tf ik − asi. (2)

The cost of executing application ai on resource provider rj is calculated by:

cij = rcj ∗ api ∗Ψij . (3)

Transfer time of application ai on resource provider rj is given as follows.

τij =
ali + adi
rbj

. (4)

Table 1. Notation

Notation Definition

al Length of application
ad Input data of application
ap Required processing element of application
as Submission time of application
aη Time weight of application
aδ Cost weight of application
γ PE weight
rc Resource cost per second of
rs Resource MIPS
rp Resource PE
rb Resource bandwidth
rt List of time-slots
ts Start time of Time-slot
tf Finish time of Time-slot
tp Available Processing element of time-slot

4.2. Economic Minimum Completion Time (EMCT)

EMCT is a combination of the MCT [6] and TOPSIS [12] algorithms. MCT
heuristic assigns the task to a machine which would complete the task at the earliest
so that all the machines are busy. TOPSIS is based on the concept that the chosen
alternative has the shortest geometric distance from the positive ideal solution and
the longest geometric distance from the negative ideal solution. It is a method of
compensatory aggregation that compares a set of alternatives by identifying weights
for each criterion, normalizing scores for each criterion and calculating the geometric
distance between each alternative and an ideal alternative, which is the best score in
each criterion.

Distributed Scheduling on Utility Grids 379

The pseudo code of EMCT is given in Algorithm 1. This algorithm uses a matrix
that represents decision matrix of TOPSIS algorithm. Matrix is of size [i][j], where
i = 1, 2...m and j = 1, 2...n. Here, m is the number of resources that satisfy the
application requirement and n is the number of criterion. Matrix [0][n] contains
weight of each criterion.

Whenever a new application arrives in the system, the broker collects information
about resources and the application. Steps 3 to 5 assign the weight of each criterion
that can be either defined by the user or by the system. Steps 6 to 8 find free time
slots from each resource and determine feasible time slot of each resource. A feasible
time slot is a slot which has the number of PEs more than or equal to required PEs
and start time should be equal or greater than the application submission time. Steps
9 to 11 calculate the response time, cost and transfer time of the application using
equations 1, 2, 3, 4 respectively. Steps 15 to 17 assign total time, processing cost and
available PEs of time slot as an alternate in the Matrix. This process is repeated for
all the resources. At step 19, TOPSIS process is called that returns the ideal solution
as resource. At Step 20, resource broker reserves resources for an application. This
process is repeated until applications arrive into the system.

Algorithm 1 Pseudo code of EMCT

1: while application arrives into system do
2: get an application ai
3: matrix[0][0] = aηi
4: matrix[0][1] = aδi
5: matrix[0][2] = γi
6: for all resource rj ∈ R do
7: for all time-slot tk ∈ TS do
8: if (tpk >= api) then
9: αij = equation 2

10: cij = equation 3
11: τij = equation 4
12: break
13: end if
14: end for
15: matrix[j][0] = τij + αij

16: matrix[j][1] = cij
17: matrix[j][2] = tpk - api
18: end for
19: res← topsis(matrix)
20: res← ai
21: end while

4.3. TOPSIS

Input to TOPSIS algorithm is the decision matrix that contains weight and value
of each criterion. The pseudo code of TOPSIS is given in Algorithm 2. As all the

380 S. Bansal, C. Hota

criteria have different units, Step 1 finds the normalized matrix using equation 5.
Step 2 calculates the weighted normalized matrix using equation 6. Now, positive
ideal solution and negative solution of each criterion is evaluated using equations 7
and 8. Positive ideal solution has minimum value in criteria and negative solution
has maximum value in criteria, in case of minimization problem. Step 4 finds the
separation measure of each cluster on the basis of negative solution and positive ideal
solution. After that, it computes the relative closeness from ideal point and negative
point, ranks the resources on the basis of closeness and returns the resource that has
minimum closeness.

4.4. Construction of Decision Matrix D

In the context of resource selection, the effect of each criterion cannot be considered
alone and should be viewed as a trade-off among various criteria. The decision matrix,
D can be constructed as shown in Table 2.

Here i denotes the alternative resources i=1, 2,. . . , m; j represents the jth cri-
terion, j = 1, 2, . . . , n related to ith cluster, and fij is a crisp value indicating the
performance value of each resource fi with respect to each criterion fj . wj denotes
the weight of criteria j and value of all weights should be

∑n
j=1 wj = 1.

Table 2. Decision matrix D

wj wj+1 wn

ri fij fj+1i fni

ri+1 fi+1,j fj+1,i+1 fi+1,n

.
rm fmj fm,j+1 fmn

4.5. Economic Minimum Execution Time (EMET)

EMET is based on the concept of MET [6] heuristic. MET heuristic assigns a job
to the machine that will execute it fastest. It neither considers ready time of machine
nor the response time of an application. It allocates an application only on the basis
of execution time. We introduce EMET that considers execution time, transfer time
and cost of the application. The pseudo code of the EMET is given in Algorithm 3.
EMET is similar to EMCT except the fact that the EMET assigns applications on the
basis of execution time instead of response time. At step 15, it assigns the execution
time plus transfer time of application instead of response time plus transfer time.

5. Evaluation

We simulated the algorithms on GridSim [7] tool kit. Resources are modeled
according to specifications given in Table 3. Resources like number of PEs, MIPS and
prices are shown in table where the resource’s price is not consistent with PE’s million
instructions per second (MIPS). Grid topology is shown in Fig. 2. We used baud rate,
propagation delay and maximum transmission unit as 1000 bps, 10 milliseconds and

Distributed Scheduling on Utility Grids 381

Algorithm 2 Pseudo code of TOPSIS

1: Normalize D & its weight whose elements are defined by

Zij = fij/

√√√√ m∑
i=1

fij
2 i = 1, .., m; ; j = 1, . . . n (5)

2: Formulate the weighted normalized decision matrix whose elements are

xij = wj ∗ zij , i = 1, . . .m; ; j = 1, . . . n (6)

3: Determine idle A+ and negative idle solution A−

A+ = (max xij j ∈ J) | i = 1, . . . , n =

{x+i , x
+
i+1, . . . xn} (7)

A− = (min xij j ∈ J) | i = 1, . . . , n =

{x−i , x
−
i+1, . . . x

−
n } (8)

4: Calculate the separation measures for ideal and negative ideal solutions of each
resources as follows:

R+
i =

√√√√ n∑
i=1

(
xij − x+i

)2
i = 1, ..,m (9)

R−
i =

√√√√ n∑
i=1

(
xij − x−i

)2
i = 1, ..,m (10)

5: Calculate relative closeness of each resource to the ideal point as follows:

C+
i =

R−
i

R−
i +R+

i

= 0 ≤ c+i ≤ 1; ; i = 1, . . .m. (11)

6: Rank the resources based on the magnitude of closeness C(i)
7: Return the resource that has minimum C (i)

382 S. Bansal, C. Hota

Algorithm 3 Pseudo code of EMET

1: while application arrives into system do
2: get an application ai
3: matrix[0][0] = aηi
4: matrix[0][1] = aδi
5: matrix[0][2] = γi
6: for all resource rj ∈ R do
7: for all time-slot tk ∈ TS do
8: if (tpk >= api) then
9: Ψij = equation 1

10: cij = equation 3
11: τij = equation 4
12: break
13: end if
14: end for
15: matrix[j][0] = τij + Ψij

16: matrix[j][1] = cij
17: matrix[j][2] = tpk - api
18: end for
19: res← topsis(matrix)
20: res← ai
21: end while

1500 bytes respectively. All the resources are simulated as clusters of PE that employ
easy backfilling policies and allow advance reservations. The number of CPUs on each
resource are chosen such that the demand of CPUs by all applications will always be
greater than the total number of free CPUs available on all the resources.

Table 3. Grid resources

Site name PE MIPS Price (G$)

Delhi 100 1140 0.0069
Kolkata 65 1000 0.0032
Madras 252 1200 0.1267
Hyderabad 200 1330 1.856
Bombay 60 1320 0.1424
Pune 54 166 0.0353
Bangalore 265 1176 0.0627
Chennai 20 1140 0.0061
Indore 26 1330 0.1799

Jobs are modeled according to the workload Lubin model [8] and workload DAS2
[21] model. These models analyze well known workloads. Lubin model is analysis
of three well known workload archives where DAS2 is analysis of Distributed ASCI
Supercomputer-2. These models first apply a logarithmic transformation to the data,
due to large range, and then fit it to a novel hyper-Gamma distribution function

Distributed Scheduling on Utility Grids 383

and find the parameters of distribution using iterative Expectation Maximization
algorithm. These models derive a function for job length, job run time, job inter
arrival time and degree of parallelism for batch and interactive jobs.

Application weight can be considered as system defined or user defined. Cost,
time and PE weight are generated using uniform distribution method where sum
of weights is one. Application run times are generated using a gamma distribution
method where mean application length is set and coefficient of variation value is set
to 0.9 to test the high variation in length of applications.

Fig. 2. Grid topology.

The performance evaluation is done based on the following parameters. The av-
erage user satisfaction of all applications on given resource is defined as follows:

Average user satisfaction =

∑n
i=1 αij/ηi + cij/δi

n
(12)

Here, n is the number of successful applications executed and j is the resource where
application is executed. The objective is to minimize the user benefit because less
user satisfaction is better. The results presented are averaged out over ten trials with
different resource prices. Simulation work is shown in three scenarios:

• Case-1: The cost and time weight are defined by the user.

• Case-2: The cost and time weight are defined by the user and PE weight is
defined by the system.

• Case-3: All weights are defined by the system.

384 S. Bansal, C. Hota

5.1. Case:1

This section shows user satisfaction and number of failures of proposed algorithms
with varying number of applications and users.

5.1.1. Effect of Varying Number of Applications

Figure 3 shows normalized user satisfaction. This graph shows that EMCT user
satisfaction is less than the EMET, which is better here. As the number of applications
increase, the difference also increases. This figure also indicates the difference of user
satisfaction between EMCT and EMET algorithms. The maximum gain is 37000
units of EMCT at 10000 applications.

Fig. 3. Effects of user satisfaction with number of applications.

Fig. 4. Effects of failure with number of applications.

Figure 4 exhibits the number of failures with different number of applications.
Here, the failure is due to the number of required PE’s not available in the system.
It can be observed that as the number of applications increase, numbers of failures
also increases. EMET has lesser number of failure than EMCT.

Distributed Scheduling on Utility Grids 385

5.1.2. Effect of Varying Number of Users

Figure 5 and Figure 6 demonstrate the number of failures and user satisfaction with
varying number users. Here, 10000 applications are generated. It can be observed that
as the number of users increases, failure decreases because the number of applications
per user also decrease. Figure 5 exhibits that EMET has overall 7.9 lesser percentage
of failure than EMCT. From Figure 6, it can be observed that EMET is overall 19
percentage more user beneficial than EMCT which is not good sign.

Fig. 5. Effects of failure with different number of user.

Fig. 6. Effects of user satisfaction with different number of users.

5.2. Case:2

This section discusses the performance of the algorithms with varying PE weight,
defined by the system. Cost and time weight are defined by the user. Here, 1000 user
applications are generated.

386 S. Bansal, C. Hota

Figure 7 shows that user satisfaction is worse when the PE weight is zero and
it is reducing when PE weight is moderate. It can be observed that if PE weight
is moderate, the user satisfaction is also moderate. Figure 8 shows that as the PE
weight increases the number of failure decreases. Here, we observed that if we take
the PE weight moderate then user satisfaction is fair and number of failures are also
less.

Fig. 7. Effects of user satisfaction with PE weight.

Fig. 8. Effects of failure with PE weight.

5.3. Case:3

This section discusses the performance of the algorithms where all the weight are
defined by the system. It shows the performance of proposed algorithm on DAS-2
workload model and system architecture where price is generated randomly. The
prices of resources are generated using weibull distribution with parameters 23.577
and 0.5. DAS-2 system architecture is shown in Table 4. Here, 2000 user applications
are generated.

Distributed Scheduling on Utility Grids 387

Table 4. DAS-2 resources

Site name PE MIPS Price (G$)

Site01 72 1000 Random
Site02 32 1000 Random
Site03 32 1000 Random
Site04 32 1000 Random
Site05 32 1000 Random

5.3.1. Effect of Varying Weight

Figure 9 shows that the numbers of failures of EMET are least when all weight
are equal and numbers of failures are moderate when weight of time is more than
other parameters. Figure 10 depicts the user satisfaction with different weight of
parameters. It also depicts that if time weight is more than the other parameters,
user satisfaction is less. It reduces the number of failures and user satisfaction.

Fig. 9. Effects of failure with system defined weight.

Fig. 10. Effects of user satisfaction with system defined weight.

388 S. Bansal, C. Hota

5.3.2. Effect of Varying Scheduling Interval

Figures 11–14 represent the results of 5000 applications. Applications are gener-
ated using system defined weight where the value of time, cost and PE weight are .33,
.33 and .33 respectively. In the simulation scheduling interval is weibull distribution.
Figure 11 and Figure 12 show the relationship between user benefit and number of
failures. From the figures it can be noted that in EMCT user benefit is lesser (better)
than EMET which is otherwise a good indication. In EMET failures are lesser than
EMCT. Overall in EMCT, 12 percentage user benefit more than that in EMET.

Fig. 11. EMET user satisfaction and failure.

Fig. 12. EMCT user satisfaction and failure.

5.3.3. Effect of Task Distribution

Figure 13 and Figure 14 display the task distribution on different resources. It can
be observed from the figure that in EMCT tasks distribution is better than that in
EMET. EMCT distributes the task to each resource where EMET makes clustering
of tasks. It can be noted that EMCT maximum tasks distribution on particular

Distributed Scheduling on Utility Grids 389

resources is less than 38 percentage where EMET tasks distribution on particular
resources is more than 40 percentage.

Fig. 13. EMET task distribution.

Fig. 14. EMCT task distribution.

6. Conclusion and Future Work

We have modeled the parallel task scheduling algorithms on the Utility Grids
where user specified parameters are considered. User specified parameters are used to
select best resources as well as to evaluate the user satisfaction. We have compared
the proposed EMCT and EMET algorithms and found that as number of applications
increase, failure of applications also increase. To reduce the number of failures, we
have also considered PE weight that should be system defined. We have found that
inclusion of PE weight gives almost the same user satisfaction and less number of
failures. It is observed that PE weight should be less than the other weights. EMCT
distributes tasks evenly on resources and user satisfaction is less (better) where as

390 S. Bansal, C. Hota

EMET distributes the tasks unevenly and number of failures is less. From the user
point of view, EMCT performs better because user does not consider the number
of failures. Well known parallel work load models are used to define user behavior.
System behavior is also defined using well known architectures. These algorithms
involve less overhead and lead to more efficient resource allocation than other opti-
mal resource allocation approaches. In future, we plan to investigate the impact of
proposed algorithms on Globus toolkit. We will also concentrate on the concurrent
execution of dependent jobs which could not be addressed in the current work.

References

[1] Foster I., Kesselman C., The Grid: Blueprint for a Future Computing Infrastructure,
Morgan Kaufmann Publishers, USA, 1999.

[2] Thain D., Tannenbaum T., Livny M., Distributed Computing in Practice: The
Condor Experience, Concurrency and Computation: Practice and Experience, Vol. 17,
2005, pp. 323–356.

[3] Garg S. K., Buyya R., Siegel H. J., Cost Trade-Off Management for Scheduling
Parallel Applications on Utility Grids, Future Generation Computer Systems, Vol. 26,
2010, pp. 1344–1355.

[4] Berman F., Wolski R., Casanova H., Cirne W., Dail H., Faerman M., Figueira
S., Hayes J., Obertelli G., Schopf J., Shao G., Smallen S., Spring N., Su A.,
Zagorodnov D., Adaptive Computing on the Grid using AppLeS, IEEE Transactions
on Parallel and Distributed Systems, Vol. 14, Issue 4, 2003, pp. 369–382.

[5] Seymour K., YarKhan A., Agrawal S., Dongarra J., NetSolve: Grid Enabling
Scientific Computing Environments, in: L. Grandinetti (Ed.), Grid Computing and New
Frontiers of High Performance Processing, Advances in Parallel Computing, Elsevier,
Vol. 14, 2005, pp. 33–51.

[6] Braun T. D., Siegel H. J., Beck N., A Comparison of Eleven Static Heuristics
for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems, Journal of Parallel and Distributed Computing, Vol. 61, 2001, pp. 810–837.

[7] Buyya R., Abramson D., Giddy J., Stockinger H., Economic Models for Resource
Management and Scheduling in Grid Computing, Concurrency and Computation: Prac-
tice and Experience (CCPE), Wiley Press, Vol. 14, Issue 13–15, 2002, pp. 1507–1542.

[8] Lublin U., Feitelson D., The Workload on Parallel Supercomputers: Modeling The
Characteristics of Rigid Jobs, Journal of Parallel and Distributed Computing, Vol. 63,
2003, pp. 1105–1122.

[9] Ang Li, Nianming Yao, Peiyu Hong, A Cost and Time Balancing Algorithm for
Scheduling Parallel Tasks on Computing Grid, International Conference on Computer,
Mechatronics, Control and Electronic Engineering (CMCE), Hong Kong, 2010, pp. 185–
188.

[10] Bansal S., Hota C., Efficient Refinery Scheduling Heuristics in Heterogeneous Com-
puting Systems, Journal of Advances in Information Technology, Academy Publisher,
August, Vol. 2, No. 3, 2011, pp. 159–164.

Distributed Scheduling on Utility Grids 391

[11] Kumar A., Chaubey N., Yakkali S., Immediate Mode Scheduling Methods for In-
dependent Jobs on Open Online Heterogeneous Systems, 15th International Conference
on High Performance Computing, 2009, Bangalore, pp. 12–17.

[12] Sen P., Yang J. B., Multiple Criteria Decision Support in Engineering Design,
Springer-Verlag Berlin Heidelberg, New York 1998.

[13] Hoschek W., Jaen-Martinez J., Samar A., Stockinger H., Stockinger K., Data
Management in an International Data Grid Project, First International Workshop on
Grid Computing, Bangalore, India, 2000, pp. 1–15.

[14] Wolski R., Spring N. T., Hayes J., The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Meta Computing, Journal of Future Gen-
eration Computing System, Vol. 15, Issue 6, 1999, pp. 757–768.

[15] Gong L. G., Sun X. H., Watson E. F., Performance Modeling and Prediction of
Nondedicated Network Computing, IEEE Trans on Computers, Vol. 51, Issue 9, 2002,
pp. 1041–1055.

[16] Golconda K. S., A Comparison of Static QoS-based Scheduling Heuristics for a Meta-
Task with Multiple QoS Dimensions in Heterogeneous Computing, 18th International
Parallel and Distributed Processing Symposium, Santa Fe, New Mexico, USA, 2004,
pp. 1–14.

[17] Ernemann C., Economic Scheduling in Grid Computing, 8th International Workshop
Job Scheduling Strategies for Parallel Processing, UK, 2002, pp. 128–152.

[18] He X. S., Sun X. H., Laszewski G. V., QoS Guided MinMin Heuristic for Grid Task
Scheduling, Journal Computer Science Technology, Vol. 18, Issue 4, 2003, pp. 442–451.

[19] Mualem A. W., Feitelson D. G., Utilization, Predictability, Workloads, and User
Run-time Estimates in Scheduling the IBM SP2 with Back-filling, IEEE Transactions
on Parallel and Distributed Systems, Vol. 12, Issue 6, 2001 pp. 529–543.

[20] Deb K., Agrawal S., Pratap A., Meyarivan T., A Fast and Elitist Multi-objective
Genetic Algorithm: NSGA-II, IEEE Trans. Evolutionary Computation, Vol. 6, Issue 2,
2002, pp. 182–197.

[21] Hui Li, Groep D., Wolters L., Workload Characteristics of a Multi-cluster, Super-
computer, 10th International Workshop, JSSPP 2004, New York, NY, USA, Vol. 3277,
2005, pp. 176–193.

[22] Chitra P., Venkatesh P., Rajaram R., Comparison of Evolutionary Computa-
tion Algorithms for Solving Bi-objective Task Scheduling Problem, Indian Academy of
Science, Vol. 36, Issue 38, 2011, pp. 167–180.

[23] Beghdad Bey K., Benhammadia F., Mokhtarib A., Guessoumc Z., Independent
Task Scheduling in Heterogeneous Environment via Make-span Refinery Approach, In-
ternational Conference on Machine and web Intelligence, Algiers, Algiers, October 2010,
pp. 211–217.

[24] Kamalam G. K., Muralibhaskaran V., A New Heuristic Approach: Min-mean Algo-
rithm for Scheduling Meta-Tasks on Heterogeneous Computing Systems, International
Journal of Computer Science and Network Security, Vol. 10, No. 1, January 2010,
pp. 24–31.

[25] Braun T. D., Siegel H. J., Maciejewski A., Static Mapping Heuristics for Tasks
with Dependencies, Priorities, Deadlines and Multiple Versions In Heterogeneous Envi-
ronments, Journal of Parallel Distributed Computing, Vol. 68, No. 11, 2008, pp. 1504–
1516.

392 S. Bansal, C. Hota

[26] Maheswaran M., Quality of Service Driven Resource Management Algorithms for
Network Computing, International conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, NV, June 1999, pp. 1090–1096.

[27] Martino V. D., Mililotti M., Scheduling in a Grid Computing Environment using
Genetic Algorithms, International Parallel Distributed Processing Symposis (IPDPS02),
IEEE, pp. 235–239.

[28] Zheng S., Shu W., Gao L., Task Scheduling using Parallel Genetic Simulated An-
nealing Algorithm, IEEE International Conference Service Operations Logist. (SOLI06),
pp. 46–50.

