
International Journal of Computers and Applications, Vol. 30, No. 2, 2008

ADAPTIVE BANDWIDTH MANAGEMENT

AND QoS PROVISIONING IN IPVPNs

C. Hota,∗ S. Jha,∗∗ and G. Raghurama∗∗∗

Abstract

An IP Virtual Private Network (VPN) uses a major share of phys-

ical resources of a network to satisfy customer’s demand for secure

connectivity and Quality of Service (QoS) over the Internet. Service

Level Agreements (SLAs) are often used to provide bandwidth-

guaranteed VPNs on networks that do not support reservation. To

meet these SLAs, service providers overprovision the bandwidth

allocation. This is effective, but not economic and does not enforce

compliance by the customer, with potentially adverse consequences

for charging and congestion control mechanisms. This article pro-

poses an agent-based approach to dynamically adjust the allocated

bandwidth as per the user’s requests so that the VPNs that are

carrying real time or multimedia traffic can be allocated with re-

quired amount of bandwidth. The Agent processes acting on behalf

of VPN users may decrease their allocated capacity if the users

underuse the allocated quota so that the Service provider can satisfy

few additional demands. We propose distributed bandwidth resiz-

ing algorithms for optimizing inter-VPN and intra-VPN bandwidth

allocations. This leads to an increased number of VPN connections

and better utilization of network resources. The simulation results

of the proposed adaptive algorithms show efficient utilization of

network bandwidth among the VPN users.

Key Words

Virtual private networks, bandwidth allocation, Quality of Service,

agents, user satisfaction

1. Introduction

A Virtual Private Network (VPN) is usually created
through the provision of private connectivity on public
network infrastructure [1]. A network-based IP-VPN uses
Internet Service Provider’s (ISP’s) core routers to build the
VPN [2]. Quality of Service (QoS) guarantee is becoming

∗ Computer Science and Information Systems Group, Birla
Institute of Technology and Science, Pilani 333031, India;
e-mail: c_hota@bits-pilani.ac.in

∗∗ School of Computer Science & Engineering, University of
New South Wales, Sydney, NSW 2052, Australia; e-mail:
sjha@cse.unsw.edu.au

∗∗∗ Electrical and Electronics Engineering Group, Birla Insti-
tute of Technology and Science, Pilani 333031, India; e-mail:
graghu@bits-pilani.ac.in

Recommended by Prof. Mohamed Ould-Khaoua
(paper no. 202-2223)

a significant challenge for the VPN service providers as
VPN users want to have real time applications such as IP
telephony, interactive games, teleconferencing, videos and
audios etc., over their VPN connections [3].

The VPNs have traditionally been deployed for reasons
of economy of scale, but have either been statically defined,
requiring manual configuration, or else unable to offer any
QoS guarantees. In order to achieve the statistical mul-
tiplexing in the providers’ network, and thus increase the
utility of the underlying network, the bandwidth allocated
to each tunnel should be dynamically adjusted [4, 5]. The
user may not be able to specify traffic matrix accurately in
the Service Level Agreement (SLA). Hence, the admission
control and tunnel setup must be supplemented with finer
levels of dynamic control over the bandwidth allocation to
maximize the network usage, and user satisfaction. Our
approach is different from the bandwidth management ap-
proach discussed in literature [5–7] where, the resource
management task is solely done by the edge device.

There are two different ways for bandwidth manage-
ment: one is bandwidth reallocation and the other is path
rerouting. As an example, Figs. 1–4 show reallocations
and path rerouting. Fig. 1 shows the initial tunnel set ups.
The spare capacities available over L1 and L2 are 2Mbps
(12-5-5), and 20Mbps (30-10) respectively. Assume that
there are no tunnels currently provisioned over links L3 and
L4. Fig. 2 and 3 depict separate instances of bandwidth
reallocations. In Fig. 2, T1’s additional 2Mbps demand
is given from the available spare capacity. However, in
Fig. 3, T1’s requirement is satisfied by releasing 2Mbps

Figure 1. Initial tunnel setups and link capacities.

142

Figure 2. Bandwidth reallocation when T1 needs 2Mbps
additional capacity.

Figure 3. Bandwidth reallocation when T1 needs 4Mbps
additional capacity.

Figure 4. Bandwidth path rerouting when T1 needs
8Mbps additional capacity.

from T2 and the spare capacity of 2Mbps. Of course, the
assumption here is that T2 is underused. Fig. 4 depicts the
path rerouting scenario where, T1’s requirement to reach
at node 2 starting from node 1 was met by an alternate
route over L2, L3 and L4. This is because the resources
available over L1 were not sufficient.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the related work. In Section 3, we define
the system model. In Section 4, we describe algorithms
for adaptive bandwidth management that describe how
the additional amount of bandwidth is computed by the

Agent process (AP), and how Bandwidth Managers (BMs)
compute the tunnel path and manage the requests of these
agents. In Section 5, we report experimental results and
finally, in Section 6, we conclude and discuss future work.

2. Related Work

Mitra and Ziedins [6] have proposed a hierarchical virtual
partitioning scheme where they optimally allocate band-
width on a single link. Network state and traffic load decide
priority of a VPN. They do not consider the bandwidth
allocation in the core network. Garg and Saran [7] have
proposed a stochastic fair sharing approach for bandwidth
management. They have considered normalized usage of
a fraction of link bandwidth. The capacities are dynami-
cally modified, i.e., increased upon session arrival and de-
creased on completion. Duffield et al. [8] propose a hose
model that analyses the need for aggregating the traffic
that belongs to a single VPN. They reserve capacity in the
core network, where the capacity needs to be dynamically
allocated. They used statistical multiplexing to decrease
aggregate bandwidth requirements. Later, they resized the
initial allocation on the basis of online measurements. Lin
et al. [9] have proposed virtual path bandwidth resizing
algorithm, routing and rerouting algorithms for managing
virtual paths in ATM networks. They have considered the
bandwidth utilization and the different degrees of urgency
between increase and decrease of the bandwidth. Chan
et al. [10] have shown that the network utilization can
be improved by managing the bandwidth dynamically as
per the arrival rate of the user requests. Saito [11] com-
pares static and dynamic resource allocation mechanisms
in ATM networks and shows that dynamic allocation is
promising for situations where a priori reference model
is unclear. Pitsillides et al. [12] have proposed hybrid
schemes that combine classical constrained and genetic al-
gorithms for solving efficiently the bandwidth allocation
for virtual paths problem.

Most of the above schemes have considered the hier-
archical traffic differentiation methodology for managing
bandwidth in VPNs. They do not consider the utility
functions suitable to VPN users which we have addressed
in this paper. Also the algorithms proposed here use an
agent-based distributed approach. This distributed solu-
tion outperforms the centralized solutions earlier proposed
for dynamically managing the bandwidth in VPNs. An
initial version of this paper appears in [13].

3. System Model

The VPN tunnel path from source to destination is com-
puted using hill climbing shortest path heuristics that is
better from [14] in terms of time taken to reach at the
destination. Here, it uses link cost as a metric for selecting
a better link from many available. Algorithm 2 in An-
nexure describes this heuristics. We use one AP for each
user at the Customer Premises Equipment (CPE) device
and BMs at all the ISP domains including the CPE. The
AP is created by the BM for each user of the tunnel that
is responsible for monitoring the bandwidth usage of the

143

corresponding user. If it is necessary to resize the band-
width currently allocated to a user in the VPN, then the
corresponding AP sends a request to the local BM. The
BM in turn sends this to all the BMs in the path of the
tunnel that was earlier computed. A distributed consensus
protocol is run by all the BMs to reach at an agreement
(Algorithm 5 in Annexure).

For better understanding let us look at an example.
Let the link capacity of a link be C units. Let the utility
function for every user ‘i’ in the tunnel be denoted by ui(b)
that is computed by the AP using following equation:

ui(b) =
R

bi
(1)

Here, R is the traffic rate and bi is the allocated bandwidth.
Let the single link serve several VPN tunnels. Let

there be a partitioning parameter α for each tunnel ‘i’.
The BM computes the bandwidth that is to be allocated
to each tunnel using the equation given below:

Ci = αi ∗ C where 0 < αi ≤ 1 (2)

The spare capacity over the link with N number of tunnels
is given as:

SC = C −
N∑
i=1

Ci (3)

Let each tunnel ‘i’ support ni number of users. The BM
allocates initially bi amount of bandwidth to the ith user
in tunnel ‘i’ as:

bi =
Ci

ni
(4)

Using (1) and (4) AP computes the utility function for
every user in the tunnel.

Two thresholds (Low and High) are defined for the
utility function of any user. The following heuristics are
used by APs to send a request to the (BMs):

• If utilization is greater than or equal to high, then an
increase (for additional δ amount) request is sent.

• If utilization is lower than or equal to low, a request is
sent to decrease the bandwidth.

Upon receipt of a request, the local BM broadcasts a
request message to all the local APs asking for their utility
functions. It also sends this bandwidth increase or decrease
message to all the BMs in the tunnel path. BM computes
the total utility of the tunnel with ‘ni’ number of users by
using:

Ut(b) =

ni∑
i=1

ui(b) (5)

Every tunnel also has an upper threshold, i.e., Max_Ut(b).
BM uses the conditions given in the following equation for
making a decision regarding reallocation or rerouting.

bi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi + δ, if Ut(b) ≤ Max _Ut(b) & δ < SC

bi + δvictim, if Ut(b) ≤ Max _Ut(b), δ

> SC & δ ∈ V

(((αi + σ) ∗ C)/ni) + δvictim),

if Max_Ut(b) < Ut(b), δ < SC, 0

< σ ≤ 1 & δ ∈ V

ReCompute TunnelPath Otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

The above equation depicts four different cases of band-
width management. Here, δ is the additional amount re-
quested. Requested amount is allocated from spare if we
have spare capacity available in the link and current uti-
lization is under the upper bound. This is characterized by
the condition 1. If spare capacity is not available, and tun-
nel utilization is not exceeding the threshold, then choose a
victim, release the required amount of bandwidth from it,
and give this to the requesting process. This is formulated
in condition 2. Third case shows that utilization has gone
up, but the spare is sufficient to handle the request, then
first resize the tunnel bandwidth by changing α and then
add an additional δ requested. For this case as well choose
a victim, and decrease its bandwidth by an appropriate
amount. Fourth case shows that the spare is not available
and also the utilization of the tunnel has gone up. This
case is of bandwidth path rerouting. To handle this, find
out another shortest path between source and destination
of the tunnel and reallocate bandwidth to it.

4. Proposed Algorithms

The detailed distributed adaptive algorithms are given in
the Annexure. We describe here the relevant data struc-
tures used and explain with an example, the applications
of these algorithms. The data structures that are used in
all these algorithms are described as below.

• DQ: A queue to hold the deferred tunnel paths for
bandwidth path rerouting.

• ActiveList: A linked list that has an entry for every
active user in the tunnel path.

• SLA: The service level agreement that is to be sup-
ported for every source destination pair.

• TSij : A set that contains the tunnels that are formed
over a single link lij .

• Vote[]: A Boolean array.

• P: A set consisting of tunnels that form a path between
a source destination pair.

An application of algorithms is explained using Fig. 5.
Let the shortest tunnel paths computed by Step 2 of
Algorithm 1 for both the branches be S1 → C1 → C3 →
C4 → C7 → D, and S2 → C2 → C1 → C3 → C4 →
C7 → D. Step 3 computes number of tunnels over each
link. DQ is a deferred queue to hold the tunnels which
are reformed. Step 4 computes initial capacity for each
tunnel in the link. Step 5 computes initial capacity of each

144

Figure 5. Intranet VPN scenario with BMs.

user in the tunnel. Step 6 computes the spare capacity on
the link. Step 7 is the main part of this algorithm where
the BM interacts with APs and peer BMs. When the first
packet comes from a user, the network element sends new
user request to local BM that creates AP, makes an entry
of this active user in a Linked List called ActiveList. BM
sends the initial bandwidth allocated to the AP. If the
message received is for bandwidth increase from any of the
earlier existing APs then it collects the utilities of each
user in the tunnel by using Algorithm 3 and 4. BM then
decides to either resize the capacity allocated to another
user or the capacity allocated to the tunnel. The victim
agent is selected by using a greedy approach for simplicity
reasons. The victim AP is the process that has lowest
utilization among others. This victim process can only
be selected for a maximum number of times as defined in
the variable limit. This is done for avoiding starvation of
selecting VPN users that underuse their capacity over a
long period of time. Once a victim agent is selected, spare
capacity plus the remaining requirement is taken from the
victim agent. On the other hand, if all the users in a single
tunnel are efficiently utilizing their allocated quota, then
tunnel capacities are resized by changing the partitioning
parameter (α) and then allocating the required amount of
bandwidth to meet the increasing demand of the current
user. If neither of the above said conditions are true then
entire tunnel path is recomputed and again the same set
of steps are repeated expecting that we will get a path
with higher bandwidth availability. Before a BM decides
to satisfy the increased demand of a dynamic request, it
first ensures with other BMs in the path regarding whether
they have sufficient capacity available. This is done by
running a consensus protocol, i.e., Algorithm 5 given in
Annexure. For a bandwidth increase request, if the first
BM (leader) gets yes reply from all the followers then
consensus is reached. If the request is for termination,
then it terminates the agent and increases the spare by
the current allocation of the terminating user. Algorithm
3 models the behaviour of an AP that monitors the user
activity. It computes the user utilization. If utilization is

greater than the SLA defined upper bound, it computes
η that is an incremental step, using exponential averaging
defined in Algorithm 4. If the user utilization is below the
lower bound, it requests for a decrease in bandwidth. This
is based on a deterministic value, as we do not need to
predict the future samples in this case.

5. Simulation Results

We implemented our algorithms in a distributed platform
using Unix threads and communication application pro-
gramming interfaces (APIs). Each BM forks one thread
for a single user. These threads communicate with the BM
using message send and message receive primitives. The
communication between peer BMs in different domains is
also done using send, and receive APIs. The synchro-
nization between threads and the BM; between BMs is
done by Unix conditional variables and Mutexes. The
network topology is input to the algorithm using a two
dimensional matrix, where the row, column represent a
link and the cross section represents the cost over the link.
The BMs are tied to the concerned node in the topology
by a TCP/IP socket. Each user process is created as a
foreground process, and BM, and APs are created as back-
ground processes. User processes communicate with Agent
and BMs using socket API. Here, user processes act as
packet generators.

The results of simulation runs are as shown in Figs. 6–
8. The adaptive bandwidth management is done by the
BM at the CPE device. Fig. 6 shows that with less number
of tunnels over a link, not much benefit is achieved from
bandwidth utilization point of view. For example, the
curve is linear up to 50 users for number of tunnels equal
to 1 and 2 over a link. But, we do get utilization better
for this range (0 to 50) if number of tunnels is more (e.g.,
9 and 13). For large number of users, numbers of tunnels
do not play any role in reducing the bandwidth utilization
significantly. The behaviour is nearly the same. This is
shown in the graph for number of users equal to 50 and
above. This behaviour is resulted because of the fact that

145

we have to reroute many user packets from the earlier
established tunnels when the number of users is large.
But, for links with more tunnels still we can get a better
performance than the links with less number of tunnels.
Fig. 7 shows that irrespective of number of tunnels, up to
some value of traffic rate (30 kbps), utilization decreases
very slowly. But as we increase the traffic rate, for less
number of tunnels the utilization increases where as for
more number of tunnels, it decreases sharply. This is
because when the average traffic rate is low, BM allocates

Figure 6. Utilization of a link with number of users.

Figure 7. Utilization of a link with average traffic rate.

Figure 8. Request blocking rate with average traffic rate.

a major share of bandwidth to users, and when the average
rate is high, the reallocation happens frequently. The more
the number of tunnels on a link more are the reallocations.
Fig. 8 shows that with less number of tunnels, the Request
Blocking Rate (RBR) increases linearly with increase in
average traffic rate. But with more number of tunnels
in a link, the RBR drops significantly. This is because,
with high average traffic rate and more number of tunnels,
chances of getting victim agents is larger. These victim
APs are those that underuse their capacity.

6. Conclusion

In this paper, we have proposed adaptive algorithms for
bandwidth resizing for IPVPNs using software agents. The
adaptive algorithms are designed keeping in view the effi-
cient network utilization (ISP’s) and the different degrees
of urgency between the users. Our algorithms are user
oriented. The way the link bandwidth or the bandwidth
allocated to tunnels over the link is partitioned depends on
the user’s utility. Each sudden change in the users require-
ment is addressed by a linear change in the partitioning
parameter (α). By using the approach suggested here VPN
service providers can satisfy more number of users with a
quality of service guarantee and also at the same time they
can improve upon their revenue.

The proposed algorithms are scalable. They work fine
with a decent number of user connections per tunnel. The
workload of BMs can be distributed by either using broker
architecture or by using distributed scheduling approaches.
We plan to investigate these in our future work.

Acknowledgement

This work is supported by AVCC India Exchange pro-
gramme grant, The University of New South Wales, Syd-
ney, Australia. We thank anonymous reviewers for many
helpful comments on the paper.

References

[1] D. McDysan, VPN applications guide: Real solutions for
enterprise networks (USA: John Wiley & Sons, 2000).

[2] T. Erlebach & M. Ruegg, Optimal bandwidth reservation in
hose-model VPNs with multipath routing, Proc. 23rd Annual
Joint Conf. of the IEEE Computer and Communication Soci-
eties (INFOCOM 2004), Hong Kong, China, 2004, 2275–2282.

146

[3] L. Yuan, C.K. Tham, & A.L. Ananda, A probing approach
for effective distributed resource reservation, Proc. 2nd Inter-
national Workshop on QoS-IP, Milan, Italy, in M. A. Marsan,
G. Corazza, M. Listanti, & A. Roveri (Eds.), Lecture Notes in
Computer Science 2601 (London, UK: Springer-Verlag, 2003),
672–688.

[4] A. Juttner, I. Szabo, & A. Szentesi, On bandwidth efficiency
of the hose resource management model in VPNs, Proc. 22nd
Annual Joint Conf. of the IEEE Computer and Communica-
tions Societies (INFOCOM 2003), San Franciso, CA, USA,
2003, 386–395.

[5] S.H. RHEE & T. Konstantopoulos, Dynamic capacity resizing
for fair bandwidth sharing in VPNs, IEICE Transactions on
Communications, Vol. E86-B, No.5, 2003, 1625–1631.

[6] D. Mitra & I. Ziedins, Hierarchical virtual partitioning: Al-
gorithms for virtual private networking, Proc. IEEE Global
Telecommunications Conference (GLOBECOMM 1997),
Phoenix, Arizona, USA, 1997, 1784–1791.

[7] R. Garg & H. Saran, Fair bandwidth sharing among virtual
networks: A capacity resizing approach, Proc. IEEE Computer
Communications andNetworking (INFOCOM2000), Tel Aviv,
Israel, 2000, 255–264.

[8] N.G. Duffield, P. Goyal, A. Greenberg, P. Mishra, & K.K.
Ramakrishnan, A flexible model for resource management in
virtual private networks, Proc. ACM SIGCOMM, ACM Press,
New York, USA, 1999, 95–108.

[9] Y. Lin, W. Su, & C. Lo, Virtual Path Management in ATM
Networks, Proc. IEEE International Conference on Commu-
nications (ICC), Dallas, USA, 1996, 642–646.

[10] T. Chan, W. Lau, & V. Li, A measurement based congestion
alarm for self similar traffic, Proc. IEEE International Conf.
on Communications (ICC 2001), Helsinki, Finland, 2001,
1528–1533.

[11] H. Saito, Dynamic resource allocation in ATM networks, IEEE
Communications Magazine, May 1997, 146–153.

[12] A. Pitsillides, C. Patichis, A. Sekercioglu, G. Stylianou, & A.
Vasilakos, Bandwidth allocation for VP (BAVP): An investi-
gation of performance of classical constrained and evolutionary
programming optimization techniques, Computer Communi-
cations, 25, 2002, 1443–1453.

[13] C. Hota, S.K. Jha, & G. Raghurama, Distributed dynamic re-
source management in IPVPNs to guarantee quality of service,
Proc. Coordinated Quality of Service in Distributed Systems
(COQODS) Workshop, Singapore, 2004, 414–419.

[14] C. Hota & G. Raghurama, A heuristic algorithm for QoS path
computation in a Virtual Private Network, Proc. International
Conf. on Information Technology (CIT 2003), Bhubaneswar,
India, 2003, 19–24.

Biographies

Chittaranjan Hota received his
bachelors degree from Amravati
University, M.S. in 1990, received
his masters degree from TIET
(Deemed), Patiala in 1998, and
Ph.D. degree from Birla Insti-
tute of Technology and Science
(Deemed), Pilani in 2006. From
1990 to 2000 he worked as a fac-
ulty member at Amravati Uni-
versity, India. Since 2000, he
has been a faculty member at

Birla Institute of Technology & Science, Pilani, where he
is currently an Assistant Professor in Computer Science &
Information Systems group. His research interests include

traffic engineering and resource management in computer
networks, distributed systems, and network security. He is
a life member of ISTE, India.

Sanjay Jha received his Ph.D.
from University of Technology,
Sydney, Australia. He is cur-
rently a Professor in the Network-
ing group at School of Computer
Science and Engineering, Univer-
sity of New South Wales, Sydney.
His research cover a wide range
of topics in networking including
Wireless Sensor Networks, Adhoc
wireless networks, Quality of Ser-
vice (QoS) in IP Networks, and

Programmable networks. He is the principal author of the
book Engineering Internet QoS and a co-editor of the book
Wireless Sensor Networks: A Systems Perspective. He is a
member of IEEE.

G. Raghurama received his mas-
ters degree from Indian Institute
of Technology, Madras in 1980,
received his Ph.D. degree from In-
dian Institute of Science, Banga-
lore in 1985. After a year of post-
doctoral work at IISc, Bangalore,
he joined Electrical, Electronics
and Instrumentation group at
BITS, Pilani in 1987 where he
has been involved in teaching, re-
search, and administration. He is

currently the DeputyDirector (Academic) at Birla Institute
of Technology and Science, Pilani. His research interests
include interconnection networks, and telecommunication
network management.

147

Annexure

Algorithm 1 Dynamic Bandwidth Management

Input : Network Graph, Source Destination Pairs, and Maximum Utilization of each Tunnel (MAX_UT).

Output: Initial Bandwidth allocated to each user, and dynamic increase or decrease of the bandwidth allocated to active

users.

Step 1. Initializations: C←Link Capacity, UT←0, MAX_UT←Maximum Utilization, TSij←φ, P←φ, DQ←φ, Limit←
Max number of times a process can be selected as victim, Count [victim]← 0.

Step 2. Compute Tunnel paths for all the SLAs’ to be supported.

For every SLAi to be supported do

Ti =ShortestPath (source, destination); //Algorithm 2

P=P∪Ti; Endfor;

Step 3. Compute the set of tunnels that use a single link.

For every link lij on Service Provider’s domain do

Select an element ‘s’ from P∪DQ;

If (lij ∈ s) then TSij←TSij ∪ s; Endfor;

Step 4. Compute the initial bandwidth to be allocated to Tunneli of link lij .

For every Tunneli in TSij do

Ci =αi ∗C; Endfor;

Step 5. Compute the initial bandwidth to be allocated to useri with ni number of users in Tunneli
For every useri in Tunneli do

bi =Ci/ni; Endfor;

Step 6. Compute the spare capacity of the link lij

SC =C −
ni∑
i=1

Ci

Step 7. When a new user packet arrives, Bandwidth Manager (BM) creates an agent process (AP), sends the initial

bandwidth, and runs in an infinite loop.

While (True) do

ReceivePacket;

If (NewUser) then // Connection Establishment

i=QueueInWhichPacketArrives;

If (ExistsinActiveList (i) == false) then

AddtoActiveList (i);

Increment SizeofActiveList;

Fork AgentProcess (i);

Send BandwidthAllocated (bi) to Agent Process;

Endif;

Else // Dynamic Bandwidth Management

If (BandwidthIncreaseRequest) then

Run ConsensusProtocol; // Algorithm 5

While SizeofActiveList �= NULL do

Get Element (i) from ActiveList;

Send RequestMsgforUtility to Agent Process;

Uu =Receive UserUtility; //Algorithm 3

UT =UT +Uu;

Endwhile;

If (UT ≤MAX_UT) then

If (δ≤SC) then

If (ConsensusOK) then

SC←SC − δ;

bi = bi + δ;

148

Send BandwidthAllocated (bi) to AP;

Else

SC =SC + bi;

Remove RequestfromActiveList;

Decrement SizeofActiveList;

Kill AgentProcess (i);

Ti←Recompute the Path; // Algorithm 2

DQ←DQ∪Ti; Go to step 3;

Endif;

Else

Victim←ProcessWithLowestUtilization;

Count [victim]←Count [victim] + 1;

If (Count [victim]≥Limit)

Victim←ProcessWithNextLowestUtilization;

bvictim = bvictim− δ+SC;

bi = bi + δ;

SC← 0;

Send BandwidthAllocated (bi) to AP;

Endif;

Else

If (δ <SC) then

Victim←TunnelWithLowestUtilization;

Count [victim]=Count [victim]+ 1;

If (Count [victim] ≥ Limit)

Victim ← TunnelWithNextLowestUtilization;

bvictim =((((αvictim−σ) ∗C)/ni)− δ);

bi =((((αi +σ) ∗C)/ni)+ δ);

Send BandwidthAllocated (bi) to AP;

Else

SC←SC + bi;

Remove RequestfromActiveList;

Decrement SizeofActiveList;

Kill AgentProcess(i);

Ti←Recompute Tunnel Path // Algorithm 2

DQ←DQ∪Ti; Go to step 3;

Endif;

Endif;

Else

If (BandwidthDecreaseRequest) then

For each BM in the TunnelPath

Send BandwidthDecreaseRequestMessage;

SC =SC + δ;

Else // Termination of the connection

Remove RequestfromActiveList;

Decrement SizeofActiveList;

Kill AgentProcess (i);

SC =SC + bi;

Endif;

Endif;

Endif;

Endwhile;

149

Algorithm 2 Shortest Tunnel Path using Hill Climbing

Input : Network Graph, Source, and Destination Pairs.

Output : Tunnel Path (T) for every Source Destination

Pair.

Step 1. Initializations: T ←φ, I←Source (S), D←
Destination.

Step 2.

While (I �=D) do

i. Select neighbor (N) along the path with least cost;

ii. T← I∪N;

iii. I←N;

Endwhile;

Algorithm 3 Algorithm for computing User Utility and

the bandwidth increase or decrease (Agent Process)

Input : Maximum User Utility (MAX_UU), Minimum

User Utility (MIN_UU), and Allocated Bandwidth (bi).

Output : The current User utility or delta, the increase

or decrease in the allocated bandwidth.

Step 1. Initializations: User utility (Uu)← 0

Step 2. While (TRUE) do

Receive message from Bandwidth Manager;

If (Message type is BandwidthAllocated) then

bi =bandwidth;

Else

If (connection is active) then

Rate (R)←Token Bucket Parameters;

Uu =R/bi;

Send User utility (Uu) to BM;

Else

Send ConnectionCloseRequest;

Endif;

Endif;

If (Uu >MAX_UU) then

η=Incr () ; // Algorithm 4

δ= η ∗R;

Send BandwidthIncreaseRequest of δ to BM;

Else

If (Uu <MIN_UU) then

δ=0.8 ∗ bi;
Send BandwidthDecreaseRequest of δ to BM;

Endif;

Endif;

Endwhile;

Algorithm 4 Computing η using averaging approach.

Input : User utilizations at different time intervals (Uu)

Output : Return η

Step 1. Let [(t1, t2), (t2, t3), . . .], be the size of the

observing window and [(U1
u , U

2
u), (U

2
u , U

3
u), . . .] be the

user utilizations at those times.

Step 2. Let ηp and ηc be the slope of incoming traffic in

the previous and current intervals respectively.

Step 3. Compute ηp =(Un−1
u −Un−2

u)/(tn−1− tn−2)

Step 4. Compute ηc =(Un
u −Un−1

u)/(tn− tn−1)

Step 5. Compute η= ρ ∗ ηc +(1− ρ) ∗ ηp, where
(o<ρ< 1)

Step 6. Return η

Algorithm 5 Consensus Protocol

Step 1. Initializations: Leader←Source BM, Follower

Set (FS)←BMs in the tunnel path, Majority← 0, Vote

[tunneli]←False, SCtunneli←Spare Capacity of tunneli.

Step 2. Leader broadcasts VoteRequest to all the

elements of FS.

Step 3. For every element of FS

If ((Vote [tunneli] == False) &&

(SCtunneli >δ))

Send Consensus to the Leader;

Vote [tunneli] =True;

Step 4. For every Consensus message from a Follower,

Leader computes majority=majority+1.

Step 5. If (majority == Length (FS) then Leader

broadcasts ConsensusOK message to all the BMs in FS.

150

