
Run-length Coding

Method that works by counting the number of

adjacent pixels with the same grey-level value.

This count, called the run length, is then coded

and stored.

Basic methods are used primarily for binary

images, but can be used for more complex images

that have been pre-processed by thresholding to

reduce the number of gray levels to two.

Run-length Coding
 Basic concept is to code each contiguous group of

1’s or 0’s encountered in a left to right scan of a

row by its length, and establishing a convention for

determining the length of the run.

The most common approaches for determining the value of the

run are:-

 (i) specify the value of the first run of each row, or

 (ii) assume that the row begins with a white run, whose

 run-length may in fact be zero.

Basic RLC

Step1: - Define the required parameters.

 horizontal or vertical RLC ?

 Horizontal RLC – no.of bits for the coding depends

 on the no.of pixels in a row.

 i.e. if row has 2n pixels, required no.of bits = n

e.g.1. 256 x 256 image requires 8 bits, since 28 = 256

e.g.2. 512 x 512 “ “ 9 “ “ 29 = 512

Basic RLC

Step 2:- Define a convention for the first RLC number in a

row – does it represent a run of 1’s or 0’s.

e.g. 8 x 8 binary image, which requires 3 bits for each run-length coded word

 0 0 0 0 0 0 0 0

 1 1 1 1 0 0 0 0

 0 1 1 0 0 0 0 0

 0 1 1 1 1 1 0 0

 0 1 1 1 0 0 1 0

 0 0 1 0 0 1 1 0

 1 1 1 1 0 1 0 0

 0 0 0 0 0 0 0 0

using horizontal RLC we get:

 first row: 8

 second row:0,4,4

 third row: 1,2,5

 fourth row:1,5,2

 fifth row: 1,3,2,1,1

 sixth row: 2,1,2,2,1

 seventh row:0,4,1,1,2

 eigth row: 8

8, 0, 4, 4, 1, 2, 5, 1, 5, 2, 1, 3, 2, 1, 1, 2, 1, 2, 2, 1, 0, 4, 1, 1, 2, 8

RLC compressed file

Extended RLC

Used for gray level images.

Technique used called bit-plane RLC.

Decomposes multi-level (monochrome or colour) image into

a series of binary images and compresses each binary image

via one of several well-known compression methods.

Typical compression ratios of 0.5 to 1.2 are achieved with

complex 8-bit monochrome images; so without further

processing, this is not a good compression technique for

complex images.

Bit plane RLC is most useful for simple images, such as

graphics files, where much higher compression ratios are

achieved.

Extended RLC

Step 1:- for each binary digit in the gray-level value a bit-

plane is created.

 b3 b2 b1 b0

 0 0 0 0

 0 0 0 1

 0 0 1 0

 0 1 1 0

 1 1 1 1

 4 bits/pixel designation

row

c

o

l

u

m

n

bit-planes b3 b2 b1 b0

0

0

1

1

Extended RLC
Step 2:- code image plane (a string of 1’s and 0’s) using RLC

 Decimal 4-bit Natural code 4-bit Gray code

 0 0000 0000

 1 0001 0001

 2 0010 0011

 3 0011 0010

 4 0100 0110

 5 0101 0111

 6 0110 0101

 7 0111 0100

 8 1000 1100

 9 1001 1101

 10 1010 1111

 11 1011 1110

 12 1100 1010

 13 1101 1011

 14 1110 1001

 15 1111 1000

Natural code Gray code

0111 0100

1000 1100

Bit-plane Coding - Example

 Binary coded Gray coded

Gray-level RLC

Instead of a single value for a run, 2 parameters are used to

characterise the run.

The pair (G,L) correspond to the gray-level value G, and the

run-length L.

 Example 1: 8 x 8 4-bit image

 10 10 10 10 10 10 10 10

 10 10 10 10 10 12 12 12

 10 10 10 10 10 12 12 12

 0 0 0 10 10 10 0 0

 5 5 5 0 0 0 0 0

 5 5 5 10 10 9 9 10

 5 5 5 4 4 4 0 0

 0 0 0 0 0 0 0 0

 first row: 10,8

 second row:10,5 12,3

 third row: 10,5 12,3

 fourth row: 0,3 10,3 0,3

 fifth row: 5,3 0,5

 sixth row: 5,3 10,2 9,2 10,1

 seventh row: 5,3 4,3 0,2

 eighth row: 0,8

10,8,10,5,12,3,10,5,12,3,0,3,10,3,0,3,5,3,0,5,5,3,10,2,9,2,10,1,5,3,4,3,0,2,0,8

RLC - Standards

Defined by the International Telecommunications Union-

Radio (ITU-R)

Use horizontal RLC but postprocess the resulting RLC with

a Huffmann encoding scheme.

Newer versions of this standard also use a two-dimensional

technique where the current line is coded based on the

previous line. This additional processing helps to reduce the

file size.

These coding methods provide compression ratios of

about 15 to 20 for typical documents.

Arithmetic Coding

In Arithmetic Coding there is no direct correspondence

between the code and the individual pixel values.

Instead, an entire sequence of source symbols (or message) is

assigned to a single arithmetic code.

It transforms input data into a single floating point number

between 0 and 1

Arithmetic Coding

Entire image must be divided into small subimages to be

encoded.

Arithmetic coding uses the probability distribution of the

data (histogram), so it can theoretically achieve the

maximum compression specified by the entropy.

Arithmetic Coding - Example

32

64

96

128

0 1 2 3

Grey Level

Number

of pixels

16 x 16 2 bit image – Histogram:

 Probability Table:

 Pixel value Probability Initial subinterval

 0 64/256 = ¼ 0 – ¼

 1 128/256 = ½ ¼ – ¾

 2 32/256 = 1/8 ¾ – 7/8

 3 32/256 = 1/8 7/8 – 1

Arithmetic Coding - Example

1. Starting on the left, the initial 0 to 1 interval is

subdivided, based on the probability distribution.

2. The first pixel value 0 is coded by extracting the

subinterval corresponding to the 0 and subdividing it again,

based on the same relative distribution.

3. Repeat process for each pixel value in the sequence until

a final interval is determined, in this case from 58/1024 to

62/1024, or 0.056640625 to 0.0600546875. Any value

within this subinterval, such as 0.057 or 0.060, can be used

to represent this sequence of gray level values.

Arithmetic Coding - Example

 1 1/4 1/16 32/152 62/1024

 3 3 3 3

 7/8 7/32 7/128

 2 2 2 2

 3/4 3/16 3/64 31/152

 1 1 1 1

 1/4 1/16 1/64 29/152

 0 0 0 0

 0 0 0 28/512 58/1024

Coding process illustrated with an example pixel

value sequence of 0, 0, 3, 1

Encode:0 0 3 1

