

FIRST SEMESTER 2019-20 COURSE HANDOUT

Date: 26.07.2019

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No	: PHY F111
Course Title	: Mechanics Oscillations and Waves
Instructor-in-Charge	: Kaushar Vaidya
Instructor(s)	: Rishikesh Vaidya, D. Bandyopadhyay, Niladri Sarkar
Tutorial/Practical Instruct	ors: Tapomoy G. Sarkar, Amol Holkundkar, Srijata Dey, Kaushar Vaidya,
Subha	nshish Gangopadhyay, Rakesh Choubisa, Madhukar Mishra, Biswanath Layek,
D. Ba	ndyopadhyay

1. Course Description: The first half of the course deals with the applications of Newton's laws to the systems of particles and the study of linear and rotational motion using polar coordinates and physics of non-inertial reference frames. The second half deals with oscillatory motion, coupled oscillations and waves. There will be three lecture hours and one tutorial hour per week. Whereas the lectures would mostly focus on concepts and illustrative examples tutorial hour will be used to discuss representative problems from the chapters. Tutorial will follow the lectures as closely as possible.

2. Scope and Objective of the Course: Mechanics Oscillations and Waves is a foundation course in Physics that is mandatory for all the first degree students.

3. Text Books:

(a) An Introduction to Mechanics by Kleppner & Kolenkow, Tata McGraw-Hill Indian Edition, 1999

(b) Vibrations and waves, by A.P. French, CBS Publishers and Distributors, Inc., first Indian edition 1987.

4. Reference Books:

(a) Physics, Vol.1, by Halliday, Resnick, & Krane, 5th Edition, John Wiley & Sons, Inc., 2002

(b) The Physics of Waves and Oscillations by N K Bajaj, Tata McGraw-Hill 1984.

5. Course Plan:

	Topics from Text Book 1 (T1) : Kleppner & Kolenkow			
Module Number	Lecture session/Tutorial Session.	Reference	Learning Outcome	
1. Foundations of Newtonian Mechanics and Polar Coordinates.	 L1: Critical overview of Newton's laws L2: Introduction to motion in plane polar coordinates L3: Illustrative examples on polar coordinates 	T1 Section 1.9 in Chapter 1; Chapter 2 and problems related to polar coordinates in Chapter 2.	 Critical appreciation of Newton's laws Given a motion of a body involving circular geometry identify the radial and tangential components of forces and draw a free body diagram. Solve second order linear differential equation with constant coefficients through simple guess work. 	
2. Momentum	 L4: Extended systems and motion of center of mass L5: Conservation of momentum its applications and impulse L6: Mass varying systems and their applications 	T1 Chapter 3	 Description of an extended system (discrete or continuous) in terms of motion of center of mass. Formulating momentum conservation (when applicable) with appropriate velocity components referring to inertial systems. Formulating and solving the equation of motion of a mass varying system. 	
3. Work and Energy	 L7: Work energy theorem and concept of potential energy L8: Conservative and non- conservative forces. L9: Physics from energy 	T1 Chapter 4 (except section 4.14 and problems related to section 4.14)	 Application of work energy theorem for conservative systems. Calculation of power for non-conservative system Constructing energy diagrams and extracting 	

			1
	L10: Oscillatory systems and stability analysis		physical insights. 4. Stability analysis and finding frequency of small oscillations.
4. Angular Momentum and Fixed Axis Rotation	 L11: Angular Momentum and Torque in a fixed axis rotation L12: Momentum of inertia and dynamics of pure rotation. L13: Dynamics of Rotation and translation L14: Conservation of Angular Momentum L15: Angular Oscillations and stability analysis 	T1 Chapter 6	 Finding angular momentum and torque about various choices of fixed axis. Examining and exploiting conservation of angular momentum to find quantity of interest. Solving problems involving rotational and translational motion about fixed axis. Finding frequency of small angular oscillations.
5. Non-inertial Frames	 L16: Galilean transformations, uniformly accelerated frames and pseudo forces L17: Principle of equivalence L18: Physics of tides L19: Physics in rotating coordinate system L20: Illustrative problems 	T1 Chapter 8	 Learning to formulate and solve a problem from both inertial and non-inertial reference frames. Understanding the relevance of non-inertial frames, principle of equivalence and their connection to physics of tides.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

	Topics from Text Book 2 (T2) : A.P. French				
6. The Free Vibrations of Physical System.	 L21: Simple harmonic motion (SHM) for different physical systems L22: SHM equation L23: The decay of free vibrations L24: Effect of very large damping 	T2 Chapter 3	 Finding angular frequency of different oscillating systems. Solving SHM equation using complex exponential. How the free vibrations get modified by including the dissipative effects. Calculating the quality and amplitude of damped systems. 		
7. Forced Oscillator and Resonance	 L25: Undamped oscillator with harmonic forcing L26: Forced oscillator with damping L27: Effect of varying the resistive term L28: Power absorbed by a driven oscillator L29: Velocity and power resonance 	T2 Chapter 4	 Distinguish between natural and driving frequencies. Finding the amplitude of a forced oscillator as a function of driving frequency. Finding average and maximum power input to maintain the oscillations. 		
8. Coupled Oscillators and Normal Modes	L30:TwocoupledpendulumsL31:Normal modes, normalfrequencies.L32:L32:Illustrative problemsof two coupled oscillatorsL34:Many coupledoscillators	T2 Chapter 5	 Finding equation of motion of coupled free systems. Calculation of normal mode frequencies. Finding equation of motion of coupled forced systems Determining normal modes and their frequencies for N coupled oscillators. 		

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

9. Normal Modes	L35: The free oscillations	T2 Chapter 6	1. Calculating linear density of
of Continuous	of stretched strings		a uniform sting
Systems	L36: Normal modes of a stretched string, forced oscillations of a stretched string		 2. Finding the permitted frequencies for the free vibrations in strings. 3. Finding the driving frequency for the amplitude resonance of vibrating string.
10. Progressive	L37: Progressive waves in	T2 Chapter 7	1. Identifying different types
Waves	one dimension		of waves.
	 L38: Superposition, motion of wave pulses of constant shape L39: Phase and group velocity L40: Energy and its transportation by a wave 		 Distinguish particle, phase and group velocities in wave motion. Applying the relationship between phase velocity and group velocity. Finding the energy transported by a wave.

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component (Close Book/ Open Book)
Mid-Semester Test	90 Min.	30	<test_1></test_1>	Open
Comprehensive	3 h	45	<test_c></test_c>	Closed
Examination				
Tutorial Tests	20 min.	25	TBA	Closed

7. Chamber Consultation Hour: To be announced in the tutorial class.

8. Notices: Notices and solutions will be displayed only on **Nalanda site.** If required sometime on **PHYSICS or FDIII** notice board.

9. Make-up Policy: Very strict: Make up for tests will be given only to genuine cases. No makeup for tutorials/quiz.

10. Note (if any):

Instructor-in-charge Course No.