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ABSTRACT
We present an investigation of symmetric and asymmetric coalescence of two droplets of equal and unequal size on a solid surface in the
inertia-dominated regime. Asymmetric coalescence can result due to the coalescence of two unequal-sized droplets or coalescence of two
droplets having different contact angles with the surface due to a step gradient in wettability. Based on the solution of an analytical model
and lattice Boltzmann simulations, we analyze symmetric and asymmetric coalescence of two droplets on a solid surface. The analysis of
coalescence of identical droplets show that the liquid bridge height grows with time as (t∗)1/2 for θ = 90○ and (t∗)2/3 for θ < 90○, where
t∗ is dimensionless time. Our analysis also yields the same scaling law for the coalescence of two unequal-sized droplets on a surface with
homogeneous wettability. We also discuss the coalescence of two droplets having different contact angles with the surface due to a step
gradient in wettability. We show that the prediction of bridge height with time scales as (t∗)2/3 irrespective of contact angles of droplet with
the surface.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5119014., s

I. INTRODUCTION

When two liquid droplets come in contact, they merge to
form a single droplet. This process is known as coalescence of
droplets. During the early stage of the coalescence process, two liq-
uid droplets are connected by a liquid bridge of infinite curvature
at the point of contact as shown in Fig. 1. The large curvature
induces significant Laplace pressure which drives the liquid into
the bridge1–3 and, consequently, the height of a liquid bridge h0
grows with time t. The dynamics of droplet coalescence depends
on whether the coalescence droplets are freely suspended or placed
on a substrate. Coalescence of freely suspended droplets is impor-
tant in coalescence of rain drops4 and cloud formation.5 However,
there are practical applications where droplets placed on a substrate
coalesce with others. This form of coalescence is usually observed
during dropwise condensation,6,7 inkjet printing,8 and spray
coating.9

Coalescence of freely suspended droplets has been extensively
studied.9–14 Eggers et al.15 studied the Strokes regime of coalescence
both analytically and numerically. Their results revealed that the
bridge radius grows with time as t log t. Later, Duchemin et al.9 were
the first to find that the bridge height grows with time as t1/2 in the
inertial regime. However, the coalescence of droplets on a solid sub-
strate differs from the coalescence of freely suspended droplets. This
is because the presence of a solid surface slows down the transport of
liquid toward the bridge. However, the most interesting observations
can be made in the early stage of coalescence. The meniscus profile
y(x, t) during the early stage of coalescence is governed by a single
length scale and follows the self-similar dynamics.16,17 The dynamics
of the bridge profile are studied in terms of the growth of the liq-
uid bridge height with time. Ristenpart et al.18 conducted an exper-
imental and theoretical investigation to study the coalescence of
two spreading droplets on a highly wettable surface. They observed
that the width of the meniscus bridge dm grows with time t as
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FIG. 1. Schematic illustrating the coalescence of two droplets of same liquid having
different contact angles with the surface due to a step gradient in surface wetta-
bility. The dotted line shows the initial droplet profile and the solid line shows the
droplet profile after bridge formation. Here, p, R, and θ are the pressure, radius,
and contact angle of the surface, respectively, whereas, subscripts 1 and 2 repre-
sents the properties of droplet 1 and 2, respectively. Furthermore, h0, w, and pbridge
denotes the liquid bridge height, radius of curvature of bridge, and pressure in the
bridge.

dm ∼ (h3/2
0 /R0)(σt/μ)1/2, where R0, h0, σ, and μ denote the radius,

height, surface tension, and viscosity, respectively. However, the
analysis of Ristenpart et al. was restricted to a surface with con-
tact angle close to zero. Later, Narhe et al.19 reported coalescence
of two droplets on a partial wetting surface and showed that bridge
height grows linearly with time. In their experiments, coalescence
of droplets was instigated either by condensation or by the syringe
deposition. In a related publication, Lee et al.20 performed experi-
ments on a partial wetting surface with a contact angle of 10○ ≤ θ
≤ 56○. They demonstrated that bridge height Ry follows the scaling
law Ry/R0 = (3σt/4 μR0 tan θ)α, where the power law exponent α
varies in the range of 0.51 ≤ α ≤ 0.86. Hernández-Sánchez et al.16

investigated coalescence of different contact angle droplets lead-
ing to asymmetric coalescence. They showed that the bridge height
grows linearly with time. Furthermore, the initial growth shows self-
similar behavior. Recently, Thete21 studied the singularity which
arises during the coalescence of droplets using a combination of
theory, experiments, and numerical simulations.

The majority of previous studies on droplet coalescence,
including those mentioned above were performed in the regime
where viscous effects dominate inertia. However, the viscous forces
are negligible when the characteristic length scale, i.e., bridge height
h0 is much greater than the viscous length scale h0 ≫ lv, where lv
= μ2/(σρ), where μ, ρ, and σ denote the viscosity, density, and sur-
face tension of liquid, respectively.9,13 For low viscosity liquids, such
as water, viscous length lv is of O(10 nm) and, therefore, the coales-
cence process always occurs in the regime where inertia dominates
viscous effects. Therefore, it is essential to understand the coales-
cence of droplets in the inertia-dominated regime. Recently, Paulsen
et al.22,23 proposed a new inertially limited viscous regime, where
surface tension, viscous, and inertia forces all balance for all viscosity
fluids.

The inertial coalescence of droplets on a solid substrate was
first reported by Eddi et al.24 They observed that the growth of
bridge for droplets coalescing on a partial wetting substrate differs
depending on whether the substrate is of neutral wetting (θ = 90○)
or hydrophilic (θ < 90○). The bridge height is found to grow similar
to freely suspended droplets on a neutral wetting substrate, and it
grows with time as t2/3 on a hydrophilic substrate. Later, Sui et al.25

showed that the exponent of power law, for an increase in bridge
height with time, depends on time. The exponent is 2/3 up to a

certain critical time and beyond which it transitions to 1/2. For a
surface with θ = 90○, the critical time is zero, and the exponent is
1/2 for all times. In contrast, for θ < 90○, the exponent is 2/3, and it
asymptotically approaches to 1/2. Recently, Ahmadlouydarab et al.3

performed simulations to investigate coalescence of droplets on a
wettability gradient surface. However, the asymmetric coalescence
resulting due to coalescence of two unequal-sized droplets and coa-
lescence of two droplets having different contact angles26 due to a
step gradient in wettability is still not well understood. In particu-
lar, it is not clear whether the scaling law of coalescence of equal-
sized droplets is valid for asymmetric coalescence. Furthermore, a
generalized analytical model that can predict both symmetric and
asymmetric coalescence is not available.

To this end, we present a generalized analytical model to
describe the inertial early-stage coalescence of two droplets on a
solid surface. The model can be used to analyze coalescence of two
equal-sized droplets, coalescence of two unequal-sized droplets, and
coalescence of two droplets having different contact angles with the
surface due to a step gradient in wettability. We study the evolu-
tion of the liquid bridge with time during coalescence. We supple-
ment our analytical model with lattice Boltzmann method (LBM)
simulations.

II. MATHEMATICAL MODEL FOR DROPLET
COALESCENCE

Here, we present a generalized analytical model to study the
coalescence of two droplets on a solid surface. Schematic illustrating
the two-dimensional coalescence of two droplets of the same liquid
having different contact angles with the surface due to a step gra-
dient in surface wettability is shown in Fig. 1. Here, R1 and R2 are
radii of the first and second drop, respectively, and the correspond-
ing contact angles are θ1 and θ2, respectively. At t = 0, two droplets
are in contact with each other as shown by the dotted line in Fig. 1.
Later, a tiny liquid bridge connects both the droplets at the point of
contact. The pressure in the bridge is lower due to infinite curvature
of liquid bridge and this results in fluid flow from droplets to the
bridge. Consequently, bridge height h0 grows with time t.

The capillary pressure pcap that drives the motion of liquid
toward the liquid bridge and causes its growth scales as

pcap ∼
σ
w

, (1)

where σ and w denotes the surface tension and the radius of curva-
ture of the bridge, respectively. The radius of curvature of the bridge
w can be written as

w = 1
2
[(R1 sin θ1 − [R2

1 − (h0 + R1 cos θ1)2]1/2)

+ (R2 sin θ2 − [R2
2 − (h0 + R2 cos θ2)2]1/2)], (2)

where h0 is the bridge height at any instant of time t. The capillary
pressure pcap is balanced by the dynamic pressure pin of the fluid and
is given by

pin ∼ ρv2, (3)

where v is the velocity of the fluid flowing into the bridge and is given
as v = dh0/dt. Equating Eqs. (1) and (3),
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ρ(dh0

dt
)

2
= D0

σ
w

, (4)

where D0 is a proportionality constant. Substituting the expression
for w from Eq. (2) in Eq. (4), we obtain an ODE for h0(t),

ρR1 sin θ1

2σ

⎡⎢⎢⎢⎢⎣

⎛
⎝

1 −
⎡⎢⎢⎢⎢⎣

1
sin2 θ1

−
⎛
⎝

h0

R1 sin θ1
+

1
tan θ1

⎞
⎠

2 ⎤⎥⎥⎥⎥⎦

1/2
⎞
⎠

+
R2 sin θ2

R1 sin θ1

⎛
⎝

1 −
⎡⎢⎢⎢⎢⎣

1
sin2 θ2

−
⎛
⎝

h0

R2 sin θ2
+

1
tan θ2

⎞
⎠

2 ⎤⎥⎥⎥⎥⎦

1/2
⎞
⎠

⎤⎥⎥⎥⎥⎦

× (dh0

dt
)

2
= D0. (5)

To nondimensionalize the above equation, we introduce the follow-
ing dimensionless bridge height h∗0 and time t∗:

h∗0 =
h0

R1 sin θ1
, t∗ = t

(ρR3
1 sin3 θ1/σ)1/2

. (6)

The nondimensionalized Eq. (5) in terms of these dimensionless
variables is given by

1
2

⎡⎢⎢⎢⎢⎣

⎛
⎝

1 −
⎡⎢⎢⎢⎢⎣

1
sin2 θ1

−
⎛
⎝
h∗0 +

1
tan θ1

⎞
⎠

2 ⎤⎥⎥⎥⎥⎦

1/2
⎞
⎠

+
1
β
⎛
⎝

1 −
⎡⎢⎢⎢⎢⎣

1
sin2 θ2

−
⎛
⎝
βh∗0 +

1
tan θ2

⎞
⎠

2 ⎤⎥⎥⎥⎥⎦

1/2
⎞
⎠

⎤⎥⎥⎥⎥⎦
(dh∗0

dt∗
)

2
= D0,

(7)

where β = (R1 sin θ1)/(R2 sin θ2). Equation (7) describes the evolu-
tion of dimensionless bridge height h∗0 with dimensionless time t∗.
The bridge height depends on the shape of the coalescing droplets.
The above equation can be used to study the coalescence of two
equal-sized droplets, coalescence of two unequal-sized droplets and
coalescence of two droplets having different contact angles with the
surface. We solve above equation using the fourth-order Runge-
Kutta method. We compare the solution of an analytical model with
our two-dimensional LBM simulations. First, we revisit the problem
of coalescence of two equal-sized droplets having the same contact
angle θ with the surface and study the effect of contact angle on the
bridge height. We then analyze the asymmetric coalescence resulting
due to coalescence of two unequal-sized droplets and coalescence of
two droplets having different contact angles due to a step gradient in
wettability.

III. LATTICE BOLTZMANN SIMULATIONS
We employed a pseudopotential lattice Boltzmann method

(LBM) to simulate droplet coalescence process on a solid surface.
The LBM has developed into a powerful technique to simulate multi-
phase flows. In this approach, we do not require to track the interface
as it inherently captures the interface due to interparticle interaction
force between the fluid particles. Besides, there is no need to spec-
ify the dynamic contact angle as a function of contact line velocity.27

Instead, the static contact angle is employed via a parameter in the
interaction force between the fluid and solid particle. As a result,

dynamic contact angle evolves during simulations. These charac-
teristics make the LBM appropriate to simulate droplet coalescence
process. We outline the lattice Boltzmann modeling here.

A. Pseudopotential lattice Boltzmann method
The temporal evolution of particle distribution function with

Bhatnagar-Gross-Krook (BGK)28 collision operator is given as,

fi(x + eiδt, t + δt) − fi(x, t) = −1
τ
[fi(x, t) − f eqi (x, t)] +△fi(x, t),

(8)

where fi(x, t) is the particle distribution function in the ith direc-
tion with discrete particle velocity ei at location x and time t, τ is the
dimensionless relaxation time and f eqi is corresponding equilibrium
distribution function which is given by Yu et al.,29

f eqi = ρwi[1 + 3
(ei ⋅ u)

c2 +
9
2
(ei ⋅ u)2

c4 − 3
2
u2

c2 ], (9)

where c = δx/δt is the lattice speed, δx and δt are the lattice spac-
ing and time step, respectively, and wi is a weighting factor. We use
two-dimensional lattice arrangement with nine velocities (D2Q9)
as shown in Fig. 2. The weighting factor wi and discrete particle
velocities for D2Q9 model are given as

wi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4/9, i = 0,
1/9, i = 1, 2, 3, 4,
1/36, i = 5, 6, 7, 8,

(10)

ei =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(0, 0), i = 0,
(±1, 0)c, (0,±1)c, i = 1, 2, 3, 4,
(±1,±1)c, i = 5, 6, 7, 8.

(11)

Equation (8) is solved in two steps:

FIG. 2. Two-dimensional lattice arrangement with nine discrete velocities (D2Q9).
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1. Collision:
The particles arriving at a node collide and change their

direction. The post collision distribution functions are calcu-
lated as

f ∗i (x, t) = fi(x, t) − 1
τ
[fi(x, t) − f eqi (x, t)]. (12)

2. Streaming:
The particles move to the neighboring node correspond-

ing to their velocity directions

fi(x + eiδt, t + δt) = f ∗i (x, t). (13)

To implement the body force term Δfi(x, t), we used the exact
difference method (EDM) proposed by Kupershtokh,30,31

Δfi(x, t) = f eqi (ρ(x, t),u + Δu) − f eqi (ρ(x, t),u), (14)

where Δu = Fδt/ρ is velocity change due to the action of total
force F during the time step Δt. The macroscopic density ρ and
velocity u are calculated as

ρ =
b

∑
i=0

fi =
b

∑
i=0

f eqi , (15)

ρu =
b

∑
i=0

fiei +
δt
2
F =

b

∑
i=0

f eqi ei +
δt
2
F. (16)

The kinematic viscosity ν is calculated using relaxation time τ
by

ν = c2
s (τ −

1
2
)δt, (17)

where cs is the speed of sound and given as cs = c/
√

3.

The fluid particles (or pseudoparticles) resides on every lattice
site. These particles interact via interaction forces. Therefore, we
consider two types of interaction forces between the fluid and fluid
particles, and between the fluid and the solid particles (or solid wall).
Shan and Chen32,33 introduced pesudopotential ψ to simulate non-
local interactions between the fluid particles. For single-component
multiphase flow, the interaction force acting on the particles at site x
is given by34

Fint(x) = −βψ(x)∑
x′
G(x, x′)ψ(x′)(x′ − x)

− (1 − β)
2 ∑

x′
G(x, x′)ψ2(x′)(x′ − x), (18)

where β is a constant factor and depends on the equation of state.
For Peng-Robinson (P-R) equation of state, β = 1.16. The Greens
function G(x, x′) is given by

G(x, x′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g1, ∣ x′ − x ∣= 1,
g2, ∣ x′ − x ∣=

√
2,

0, otherwise,
(19)

where g1 = 2g and g2 = g/2. The pseudopotential function ψ is given
as35

ψ(x) =
¿
ÁÁÀ2(p − ρc2

s )
gc2

s
, (20)

where p is the pressure and we used g =−1 in this study. The pressure
p is calculated using Peng-Robinson (P-R) equation of state as given
by35

p = ρRT
1 − bρ −

aρ2ε(T)
1 + 2bρ − b2ρ2 , (21)

ε(T) = [1 + (0.37464 + 1.54226ω − 0.26992ω2)(1 −
√

T
Tc
)]

2

,

where a = 0.5472R2T2
c /pc and b = 0.0778RT/pc. In this work, we used

R = 1, a = 2/49, b = 2/21. In addition, the interaction force between
the fluid and the solid wall is given as36

Fads(x) = −(1 − exp−ρ(x) )∑
i
Gadswis(x + eiδt) ⋅ eiδt. (22)

The parameter Gads controls the strength of the interaction force
between the fluid and the solid wall. The different contact angles
are obtained by adjusting Gads values, and s(x + eiδt) is an indicator
function which is expressed as

s(x + xδt) = {0 if (x + eiδt) is fluid node,
1 if (x + eiδt) is solid node.

Therefore, the total force acting at each site x is given by

F = Fint + Fads. (23)

IV. RESULTS AND DISCUSSION
In this section, we present results obtained from a mathemati-

cal model and LBM simulations. We have shown a detailed valida-
tion of code in our previous paper.6 We considered three cases: (i)
coalescence of equal-sized droplets on a surface with homogeneous
wettability, (ii) coalescence of unequal-sized droplets on a surface
with homogeneous wettability, and (iii) coalescence of droplets hav-
ing different contact angles with the surface due to a step gradient in
wettability. For all simulations, we used following fluid properties:
ρl = 692.37 kg/m3, ρv = 53.85 kg/m3, νl = 1.19 × 10−7 m2/s, and νv
= 3.74 × 10−7 m2/s. Conversion of physical units to lattice units can
be found in our previous paper.6

Figure 3 shows the schematic of the computation domain for
equal-sized droplets. We performed two-dimensional simulations in

FIG. 3. Schematic of the computational domain for coalescence of two equal-sized
droplets on a surface with homogeneous wettability. We defined solid walls at the
bottom and the upper boundary and employed the bounce-back scheme. The peri-
odic condition was specified in the x-direction. Initially, two droplets of identical
radius R were placed on the bottom wall.
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FIG. 4. Contours of droplet coalescence on homogeneous
surfaces with different contact angles at different times in
the early-stage coalescence. The bridge height grows faster
on a substrate with larger contact angle.

a rectangular domain of 6Rb × 3h lattice units, where Rb and h are
the base radius and the height of a droplet, respectively. We defined
solid walls at the bottom and the upper boundary, and employed
the bounce-back scheme. Periodic boundary condition was speci-
fied in the x-direction. Initially, two droplets of identical radius R
were placed on the bottom wall. The droplets were separated by a
distance of 4 lattice units. The initial separation of the droplets has
no influence on the results. The droplets were separated by a dis-
tance of 4 lattice units. We also varied the initial separation distance
for a few cases, and we observed that the initial separation distance
does not influence the simulation predictions. This ensures that the
growth dynamics is independent of the initial condition. Therefore,
we have performed all simulations with the same initial condition,
i.e., droplets are separated by a distance of 4 lattice units.

The thickness of the interface is around 4–5 lattice units in
our simulations. We ensured that the bridge height h0 is signifi-
cantly larger than the interface thickness. Also, the scaling laws are
valid in the very early stage of the coalescence. Therefore, in this
work the bridge height h0 ranges from 0.1h to 0.4h.20 The posi-
tion of the liquid-vapor interface corresponds to a density value of
ρinterface = (ρl + ρv)/2.

We also performed grid independent study to check the effect
of grid size on simulation results. We considered two droplets of
150 μm radius each on a substrate with the contact angle of 90○.
We performed simulations with three grid resolutions of droplet
sizes, namely, 500, 750, and 1000 lattice units, while keeping the
same Ohnesorge number Oh. Here, we define the Ohnesorge num-
ber Oh = μ/√ρσRb as the ratio of viscous to inertia and sur-
face tension forces. We have calculated the Ohnesorge number Oh
based on base radius Rb of droplet 1. We find no significant dif-
ference between the droplet size 750 and 1000 lattice units. There-
fore, for all simulations reported in this work, we used droplet
size of 750 lattice units which corresponds to Δx = 0.2 μm and
Δt = 4.63 × 10−2 μs.

A. Coalescence of two equal-sized droplets
on homogeneous surfaces

First, we study the effect of surface wettability on the coales-
cence process. We performed simulations on surfaces with homoge-
neous wettability having contact angles of 48○, 62○, 77○, and 90○.
For all simulations, we fixed the total volume of droplet as 7.06
× 10−3 mm3. The values of the Ohnesorge number values are 0.0371,
0.0393, 0.0418, and 0.0441 for simulation cases with contact angles
48○, 62○, 77○, and 90○, respectively. Figure 4 shows contours of

droplet coalescence on surfaces with uniform contact angle of 48○,
62○, and 90○. The bridge height h0 grows with time t and at long
times magnitude of bridge height is of the order of droplet size.

For the coalescence of two equal-sized droplets, Eq. (7) simpli-
fies to the equation derived by the Sui et al.,25 i.e.,

⎛
⎝

1 −
⎡⎢⎢⎢⎢⎣

1
sin2 θ

−
⎛
⎝
h∗0 +

1
tan θ

⎞
⎠

2 ⎤⎥⎥⎥⎥⎦

1/2
⎞
⎠
⎛
⎝

dh∗0
dt∗
⎞
⎠

2

= D0. (24)

Figure 5 shows the comparison of the mathematical model Eq. (24)
and the LBM simulations for coalescence of equal-sized droplets.
However, the proportionality constant D0 varies with the contact
angle θ of the surface. We used values of D0 as 0.22, 0.4, 0.66, and
1.0 for contact angles of 48○, 62○, 77○, and 90○, respectively to match
with LBM simulations. The simulation results are in agreement with
the mathematical model. We observe that bridge height h∗0 grows
faster on a substrate with a larger contact angle. This is explained as
follows: For the same volume of liquid, the droplet radius decreases
with the increase of contact angle θ and, as a result, the curvature

FIG. 5. Coalescence of equal-sized droplets on a surface with homogeneous
wettability. Evolution of bridge height with time for different contact angles. We
rescaled bridge height h0 with the base radius Rb and time t with inertial time scale
√

ρR3
b/σ. Data points show the bridge height predicted by LBM simulations. Lines

show the bridge height predicted by the analytical model.
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FIG. 6. Contours of coalescence of two unequal-sized
droplets on a surface with homogeneous wettability. We
fixed the radius of droplet 1 and varied the radius of droplet
2 such that R2/R1 = 0.5.

FIG. 7. Comparison of bridge height predicted by mathematical model and LBM
simulations for coalescence of two unequal-sized droplets on a surface with homo-
geneous wettability. Data points and lines show the bridge height predicted by
LBM simulations and mathematical model, respectively. (a) R2/R1 = 0.5. (b) R2/R1
= 0.75. The bridge height scales with time as h∗0 ∼ (t

∗
)

2/3 for θ < 90○ and
h∗0 ∼ (t

∗
)

1/2 for θ = 90○.

(∼1/R) of droplet increases with θ. Moreover, the radius of cur-
vature w of the bridge also decreases with an increase in θ, and,
therefore, pressure in liquid bridge pbridge decrease. This results in
higher capillary pressure on the surface with a higher contact angle
and, subsequently, more amount of liquid flows toward the bridge.
Therefore, bridge height increases at faster rate on a surface with
larger contact angle. We also observe that the dimensionless bridge
height h∗0 follows the power law h∗0 ∼ (t∗)1/2 for θ = 90○ and
h∗0 ∼ (t∗)2/3 for θ < 90○. This disparity in power law exponent
can be explained as below. Taylor series expansion of the first term
(1 − [1/ sin θ − (h∗0 + 1/ tan θ)2]1/2) of Eq. (24) for a variable h∗0
around h∗0 = 0 up to second order terms of h∗0 gives

⎡⎢⎢⎢⎢⎣

h∗0
tan θ

+
(h∗0 )2

2
⎛
⎝

1 +
1

tan2 θ
⎞
⎠

⎤⎥⎥⎥⎥⎦

⎛
⎝

dh∗0
dt∗
⎞
⎠

2

= D0. (25)

For θ = 90○, the above equation gives h∗0 ∼ (t∗)1/2. On the other
hand, for θ < 90○, the first term (h∗0 / tan θ) dominates because h∗0
≪ 1. Therefore, bridge height scales with time as h∗0 ∼ (t∗)2/3.

B. Coalescence of two unequal-sized droplets
on homogeneous surfaces

In this section, we discuss the coalescence of two unequal-sized
droplets (or asymmetric coalescence) on surfaces with homogeneous
wettability. For simulations presented here, we fixed the radius of
droplet 1 and varied the radii of droplet 2 such that R2/R1 = 0.5, 0.75,
and 1.0. For all simulations, we fixed the total volume of droplet 1 as
7.06 × 10−3 mm3.

TABLE I. The values of proportionality constant D0 for different contact angles used
in Eq. (26).

Proportionality constant D0

Contact angle θ (deg) R2/R1 = 0.5 R2/R1 = 0.75

48 0.18 0.20
62 0.33 0.34
77 0.55 0.57
90 0.67 0.78
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FIG. 8. Contours of coalescence of two droplets of same
liquid having different contact angles with the surface due
to a step gradient in wettability. (a) The contact angles
of droplets 1 and 2 are 62○ and 90○, respectively. (b)
The contact angles of droplets 1 and 2 are 77○ and 90○,
respectively.

Figure 6 shows the time-lapse images of the bridge profile for
R2/R1 = 0.5 for surfaces with uniform contact angles of 48○, 62○,
and 90○. The coalescence process of unequal-sized droplets differs
from that of equal-sized droplets due to asymmetric droplet menis-
cus shape. After initial contact, due to capillary pressure, liquid
from both sides flows into the liquid bridge. However, the cap-
illary pressure difference Δp1 < Δp2, where Δp1 and Δp2 are the
capillary pressure difference between the large droplet and the liq-
uid bridge, and small droplet and the liquid bridge, respectively.
Therefore, more amounts of liquid flows toward the bridge from the
smaller droplet compared to the larger droplet. Finally, the smaller
droplet is absorbed into the larger droplet. For the coalescence of
two unequal-sized droplets on a surface with uniform contact angle,
Eq. (7) simplifies to

1
2

⎡⎢⎢⎢⎢⎣

⎛
⎝

1 −
⎡⎢⎢⎢⎢⎣

1
sin2 θ

−
⎛
⎝
h∗0 +

1
tan θ

⎞
⎠

2 ⎤⎥⎥⎥⎥⎦

1/2
⎞
⎠

+
R2

R1

×
⎛
⎝

1 −
⎡⎢⎢⎢⎢⎣

1
sin2 θ

−
⎛
⎝
R1

R2
h∗0 +

1
tan θ

⎞
⎠

2 ⎤⎥⎥⎥⎥⎦

1/2
⎞
⎠

⎤⎥⎥⎥⎥⎦
(dh∗0

dt∗
)

2
= D0. (26)

Figures 7(a) and 7(b) shows the comparison of mathematical
model Eq. (26) and LBM simulations for R2/R1 = 0.5 and R2/R1
= 0.75, respectively. The values of proportionality constant D0 for
different contact angles are listed in Table I. The simulation results
are in agreement with the mathematical model. We observe that
the same scaling law of coalescence of equal-sized droplets is valid
for coalescence of unequal-sized droplets and explained as below.
Taylor series expansion of the first term 0.5[(1 − [1/ sin2 θ − (h∗0
+ 1/ tan θ)2]1/2)+R2/R1(1− [1/ sin2 θ−(R1/R2 h∗0 + 1/ tan θ)2]1/2)]
of Eq. (26) for a variable h∗0 around h∗0 = 0 up to second order terms
of h∗0 gives

⎡⎢⎢⎢⎢⎣

h∗0
tan θ

+
(h∗0 )2

2
⎛
⎝

1 +
1

tan2 θ
⎞
⎠
R1 + R2

2R2

⎤⎥⎥⎥⎥⎦

⎛
⎝

dh∗0
dt∗
⎞
⎠

2

= D0. (27)

For θ = 90○, the above equation gives h∗0 ∼ (t∗)1/2. In contrast,
for θ < 90○, the first term (h∗0 / tan θ) dominates because h∗0 ≪ 1.
Therefore, the bridge height scales with time as h∗0 ∼ (t∗)2/3.

C. Coalescence of two droplets of same liquid having
different contact angles with the surface due
to a step gradient in wettability

In this section, we analyze the coalescence of two droplets of
the same liquid having different contact angles with the surface due
to a step gradient in wettability. The surface x < 3Rb has θ = 90○ and
for x ≥ 3Rb has θ < 90○. First, we fixed the contact angle of droplet
2 as θ2 = 90○ and varied the contact angle of droplet 1 such that

θ1 < 90○. We set the total volume as 7.06 × 10−3 mm3 for both
droplets having different contact angles with the surface. Figure 8
shows the contours of coalescence of two droplets of same liquid
with contact angles of droplet 1 and droplet 2 are 62○ and 90○,
respectively. In this case also, due to different contact angles of
droplets with the surface, the shape of the meniscus is asymmetric.

Figure 9 shows the comparison of mathematical model and
LBM simulations for θ1 < 90○ and θ2 = 90○. We used values of D0
as 0.45, 0.60, 0.68, and 0.80 for contact angles of 48○–90○, 62○–90○,
69○–90○, and 77○–90○, respectively, to match with LBM simulations.
The simulation results matches with the mathematical model. We
observe that for all cases, bridge height h∗0 grows as h∗0 ∼ (t∗)2/3.
Although, the contact angle of the second droplet is 90○, bridge
height grows with (t∗)2/3. To understand the reason behind the scal-
ing law (t∗)2/3 irrespective of the contact angle θ, we performed the
Taylor series expansion of Eq. (7). Taylor series expansion of first
term 0.5[(1− [1/ sin2 θ− (h∗0 + 1/ tan θ1)2]1/2)+ 1/β(1− [1/ sin2 θ−
(βh∗0 + 1/ tan θ2)2]1/2)] of Eq. (7) for a variable h∗0 around h∗0 = 0 up
to the second order terms of h∗0 gives

⎛
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h∗0
2
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1
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1

tan θ2

⎞
⎠

+
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dh∗0
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⎠

2

= D0. (28)

FIG. 9. Comparison of bridge height predicted by the mathematical model and
LBM simulations for coalescence of two droplets of same liquid having different
contact angles with the surface due to a step gradient in wettability. Data points
and lines show the bridge height predicted by LBM simulations and mathemati-
cal model, respectively. The surface x < 3Rb has θ = 90○ and for x ≥ 3Rb has
θ < 90○.
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For θ1 < 90○ and θ2 = 90○, the first term h∗0 /2(1/ tan θ1) dominates
because h∗0 ≪ 1. However, this term is a function of θ1 only. There-
fore, bridge growth depends on the lower contact angle of droplet
θ1 and we get the power law h∗0 ∼ (h∗0 )2/3. Similarly, for both θ1
< 90○ and θ2 < 90○, we can easily show that the nondimensional
bridge height grows with dimensionless time as h∗0 ∼ (h∗0 )2/3.

V. CONCLUSIONS
We have investigated symmetric and asymmetric coalescence

of two droplets on a solid surface. For low viscosity liquids, such
as water, inertia dominates viscous effects, and hence, coalescence
occurs in the inertia-dominated regime. We have proposed a gener-
alized analytical model to study the coalescence of two droplets. The
model can be used to predict the growth of a liquid bridge for coales-
cence of two equal-sized droplets, coalescence of two unequal-sized
droplets, and coalescence of two droplets having different contact
angles with the surface due to a step gradient in wettability. We also
supplemented results of the mathematical model with LBM simu-
lations based on the pseudopotential multiphase model. The results
showed that for the coalescence of two equal-sized droplets on a sur-
face with homogeneous wettability, the growth of a liquid bridge
scales with time as (t∗)1/2 and (t∗)2/3 for θ = 90○ and θ < 90○,
respectively. We also demonstrated that the same scaling relation is
valid for the coalescence of two unequal-sized droplets on a surface
with homogeneous wettability. In addition to coalescence of equal
and unequal-sized droplets, we have discussed the coalescence of
two droplets of the same liquid having different contact angles with
the surface due to a step gradient in wettability. We showed that
irrespective of contact angles, the bridge height scales with time as
h∗0 ∼ (t∗)2/3.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial support from

the Department of Science and Technology (DST), India via the
INSPIRE fellowship (Award No. IFA12-ENG-15). The authors also
thank IIT Delhi HPC facility for computational resources.

APPENDIX: RADIUS OF CURVATURE w
OF THE LIQUID BRIDGE

Here, we provide the detailed derivation of Eq. (2) for the radius
of curvature w of the liquid bridge. Figure 10 shows the geometry
of the coalescence of two liquid droplets of the same liquid having
different contact angles with the surface due to a step gradient in
surface wettability.

The radius of curvature of the bridge w is partly in the region
having contact angle θ1 and partly in the region having contact angle
θ2. Therefore, we take the radius of curvature of the bridge w as the
average of w1 and w2 as given below,

w = 1
2
(w1 + w2). (A1)

From△OAB, we can obtain the distance OB as given by

x1 = [R2
1 − (h0 + R1 cos θ1)2]1/2. (A2)

FIG. 10. Schematic of the coalescence of two droplets of same liquid having
different contact angles with the surface.

Since x1 + w1 = R1 sin θ1, we obtain w1 as given below,

w1 = R1 sin θ1 − [R2
1 − (h0 + R1 cos θ1)2]1/2. (A3)

Similarly, we can also obtain w2 as given by

w2 = R2 sin θ2 − [R2
2 − (h0 + R2 cos θ2)2]1/2. (A4)

From Eq. (A1), we get

w = 1
2
[(R1 sin θ1 − [R2

1 − (h0 + R1 cos θ1)2]1/2)

+ (R2 sin θ2 − [R2
2 − (h0 + R2 cos θ2)2]1/2)]. (A5)
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