
BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI (RAJASTHAN) – 333 031

II Semester 2012-13
IS C332 – Database Systems and Applications

Lab # 4 (Sub-queries and JOINS in 11g SQL)

Date: 12 Feb, 2013

This labsheet is primarily focused on DML statements covering JOINS and SUB-
QUERIES. To learn and understand such SQL queries we create a schema for the
requirements of a typical restaurant database as given below.

After having closely observed the above ER, you must be thinking of creation of this
schema. FFFFor this you may refer the DDL and the DML required to upload the data, or this you may refer the DDL and the DML required to upload the data, or this you may refer the DDL and the DML required to upload the data, or this you may refer the DDL and the DML required to upload the data,
presented presented presented presented at the end of this Sheetat the end of this Sheetat the end of this Sheetat the end of this Sheet. . . . So far, we’ve learnt using DDL- integrity constraints
and some simple DML for displaying table data and a few of the tables-join operations.
This lab will take us more on joins and more ways to combine tables using nested
queries - a query within a query. Such an embedded query is also called a subquery. A
subquery computes results that are then used by an outer query. Basically, a subquery
acts like any other expression we’ve seen so far. A subquery can be nested inside the
SELECT, FROM, WHERE, and HAVING clauses. You can even have subqueries nested
inside another query.

Find the names of the ingredients supplied by Veggies_R_UsFind the names of the ingredients supplied by Veggies_R_UsFind the names of the ingredients supplied by Veggies_R_UsFind the names of the ingredients supplied by Veggies_R_Us
SELECT name
FROM ingredients
WHERE vendorid =
(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us');

SQL marks the boundaries of a subquery with parentheses.

Some points to remember when using subqueries:Some points to remember when using subqueries:Some points to remember when using subqueries:Some points to remember when using subqueries:

1. Only the columns of the outermost query can appear in the result table. Therefore
while answering a query, the outermost query must contain all of the attributes
needed in the answer.

2. The inner query must have a link with the outer query. SQL comparison operators
can provide good support for this.

3. Subqueries are restricted in what they can return. First, the row and column
count must match the comparison operator. Second, the data types must be
compatible.

Subqueries using IN:Subqueries using IN:Subqueries using IN:Subqueries using IN:
In the above query, the = operator makes the connection between the queries. Because =
expects a single value, the inner query may only return a result with a single attribute
and row. If subquery returns multiple rows, we must use a different operator. We use
the IN operator, which expects a subquery result with zero or more rows.

Find the Find the Find the Find the name of all ingredients supplied by Veggies_R_Us or Spring Water Supplyname of all ingredients supplied by Veggies_R_Us or Spring Water Supplyname of all ingredients supplied by Veggies_R_Us or Spring Water Supplyname of all ingredients supplied by Veggies_R_Us or Spring Water Supply
SELECT name
FROM ingredients
WHERE vendorid IN
(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR
companyname = 'Spring Water Supply');

>> T>> T>> T>> Try solving the above requiry solving the above requiry solving the above requiry solving the above requirement without using a subquery.rement without using a subquery.rement without using a subquery.rement without using a subquery.

Find the average unit price for all items provided by Veggies_R_UsFind the average unit price for all items provided by Veggies_R_UsFind the average unit price for all items provided by Veggies_R_UsFind the average unit price for all items provided by Veggies_R_Us
SELECT AVG(unitprice) AS avgprice
FROM ingredients
WHERE vendorid IN
(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us');

Subqueries using BSubqueries using BSubqueries using BSubqueries using BETWEEN:ETWEEN:ETWEEN:ETWEEN:
Find all of the ingredients with an inventory within 25% of the average inventory of Find all of the ingredients with an inventory within 25% of the average inventory of Find all of the ingredients with an inventory within 25% of the average inventory of Find all of the ingredients with an inventory within 25% of the average inventory of
ingredientsingredientsingredientsingredients
SELECT name
FROM ingredients
WHERE inventory BETWEEN
(SELECT AVG(inventory) * 0.75
FROM ingredients)
AND
(SELECT AVG(inventory) * 1.25
FROM ingredients);

Subqueries can even be combined with other predicates in the WHERE clause, including
other Subqueries. Look at the following query.

Find the companies who were referred by Veggies_R_Us and provide an ingredient in Find the companies who were referred by Veggies_R_Us and provide an ingredient in Find the companies who were referred by Veggies_R_Us and provide an ingredient in Find the companies who were referred by Veggies_R_Us and provide an ingredient in
the milk food groupthe milk food groupthe milk food groupthe milk food group
SELECT companyname
FROM vendors
WHERE (referredby IN
(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us')) AND
(vendorid IN
(SELECT vendorid
FROM ingredients
WHERE foodgroup = 'Milk'));

Multilevel Subquery Nesting:Multilevel Subquery Nesting:Multilevel Subquery Nesting:Multilevel Subquery Nesting:

Find the name and price for all items usinFind the name and price for all items usinFind the name and price for all items usinFind the name and price for all items using an ingredient supplied by Veggies_R_Usg an ingredient supplied by Veggies_R_Usg an ingredient supplied by Veggies_R_Usg an ingredient supplied by Veggies_R_Us

SELECT name, price
FROM items
WHERE itemid IN

(SELECT itemid -- Subquery 3
FROM madewith
WHERE ingredientid IN

(SELECT ingredientid -- Subquery 2
FROM ingredients
WHERE vendorid =

(SELECT vendorid -- Subquery 1
FROM vendors
WHERE companyname = 'Veggies_R_Us')));

>> T>> T>> T>> Try solving the above requirement withry solving the above requirement withry solving the above requirement withry solving the above requirement with ONLY JOINSONLY JOINSONLY JOINSONLY JOINS....
First the innermost subquery is executed which return one single value. Then subquery2
is executed, the result of which is passed to subquery3. We can use GROUP BY,
HAVING, and ORDER BY with subqueries.

For each store, find the total sales of items made with ingredients supplied by For each store, find the total sales of items made with ingredients supplied by For each store, find the total sales of items made with ingredients supplied by For each store, find the total sales of items made with ingredients supplied by
Veggies_R_Us. Ignore meals and only consider stores with at least two such items soldVeggies_R_Us. Ignore meals and only consider stores with at least two such items soldVeggies_R_Us. Ignore meals and only consider stores with at least two such items soldVeggies_R_Us. Ignore meals and only consider stores with at least two such items sold
SELECT storeid, SUM(price) AS sales
FROM orders
WHERE menuitemid IN

(SELECT itemid -- Subquery 3
FROM madewith
WHERE ingredientid IN

(SELECT ingredientid -- Subquery 2
FROM ingredients
WHERE vendorid =

(SELECT vendorid -- Subquery 1

FROM vendors
WHERE companyname = 'Veggies_R_Us')))

GROUP BY storeid
HAVING COUNT(*) > 2
ORDER BY sales DESC;

GROUP BY, HAVING can be used in subqueries as well. Using ORDER BY in a
subquery makes little sense because the order of the results is determined by the
execution of the outer query.

Subqueries Using NOT ISubqueries Using NOT ISubqueries Using NOT ISubqueries Using NOT IN:N:N:N:

Find all of the ingredients supplied by someone other than Veggies_R_UsFind all of the ingredients supplied by someone other than Veggies_R_UsFind all of the ingredients supplied by someone other than Veggies_R_UsFind all of the ingredients supplied by someone other than Veggies_R_Us
SELECT name
FROM ingredients
WHERE vendorid NOT IN
(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us');

Find the company name of the small vendors who don’t provide Find the company name of the small vendors who don’t provide Find the company name of the small vendors who don’t provide Find the company name of the small vendors who don’t provide any ingredients with any ingredients with any ingredients with any ingredients with
large (large (large (large (>>>>100) inventories100) inventories100) inventories100) inventories
SELECT companyname
FROM vendors
WHERE vendorid NOT IN
(SELECT vendorid
FROM ingredients
WHERE inventory > 100);

By examining the ingredients table, we can see that Flavorful Creams ought to be the
answer. What happened? The ingredient Secret Dressing does not have a vendor, so the
list of values contains a NULL. How do we fix this?

SolutionSolutionSolutionSolution: Eliminate NULL values from the subquery result. Rewrite the above query!!!
SELECT companyname
FROM vendors
WHERE vendorid NOT IN
(SELECT vendorid
FROM ingredients
WHERE inventory > 100 AND vendorid IS NOT NULL);

NoteNoteNoteNote: IN over an empty table always returns false, therefore NOT IN always returns
true.

Subqueries with Empty Results:Subqueries with Empty Results:Subqueries with Empty Results:Subqueries with Empty Results:
What happens when a subquery result is empty? The answer depends on what SQL is
expecting from the subquery. Let’s look at a couple of examples. Remember that the
standard comparison operators expect a scalar value; therefore, SQL expects that any

subqueries used with these operators always return a single value. If the subquery
result is empty, SQL returns NULL.

SELECT companyname
FROM vendors
WHERE referredby =
(SELECT vendorid
FROM vendors
WHERE companyname = 'No Such Company');

Here the subquery results are empty so the subquery returns NULL. Evaluating the
outer query, referredby = NULL returns unknown for each row in vendors.
Consequently, the outer query returns an empty result table.

When using the IN operator, SQL expects the subquery to return a table. When SQL
expects a table from a subquery and the subquery result is empty, the subquery returns
an empty table. IN over an empty table always returns false, therefore NOT IN always
returns true.

SELECT companyname
FROM vendors
WHERE referredby NOT IN
(SELECT vendorid
FROM vendors
WHERE companyname = 'No Such Company');

The above subquery returns a table with zero rows (and one column). For every row in
the vendors table, NOT IN returns true over the subquery, so every row is returned.

Combining JOIN and Subqueries:Combining JOIN and Subqueries:Combining JOIN and Subqueries:Combining JOIN and Subqueries:
Nested queries are not restricted to a single table.
Find the name and price of all items using an ingredient supplied by Veggies_R_UsFind the name and price of all items using an ingredient supplied by Veggies_R_UsFind the name and price of all items using an ingredient supplied by Veggies_R_UsFind the name and price of all items using an ingredient supplied by Veggies_R_Us

SELECT DISTINCT items . itemid , price
FROM items JOIN madewith ON items . itemid =madewith . itemid
WHERE ingredientid IN
(SELECT ingredientid
FROM ingredients JOIN vendors on vendors . vendorid =ingredients . vendorid
WHERE companyname = 'Veggies_R_Us');

Standard Comparison Operators with Lists Using ANY, SOME, or ALLStandard Comparison Operators with Lists Using ANY, SOME, or ALLStandard Comparison Operators with Lists Using ANY, SOME, or ALLStandard Comparison Operators with Lists Using ANY, SOME, or ALL
We can modify the meaning of the SQL standard comparison operators with ANY,
SOME, and ALL so that the operator applies to a list of values instead of a single value.
Using Using Using Using ANY or SOMEANY or SOMEANY or SOMEANY or SOME::::
The ANY or SOME modifiers determine if the expression evaluates to true for at least
one row in the subquery result.

Find all items that have a price thatFind all items that have a price thatFind all items that have a price thatFind all items that have a price that is greater than any salad itemis greater than any salad itemis greater than any salad itemis greater than any salad item
SELECT name
FROM items
WHERE price > ANY
(SELECT price

FROM items
WHERE name LIKE '%Salad');

Find all ingredients not supplied by Veggies_R_Us or Spring Water SupplyFind all ingredients not supplied by Veggies_R_Us or Spring Water SupplyFind all ingredients not supplied by Veggies_R_Us or Spring Water SupplyFind all ingredients not supplied by Veggies_R_Us or Spring Water Supply
SELECT name
FROM ingredients
WHERE ingredientid NOT IN
(SELECT ingredientid
FROM ingredients
WHERE vendorid = ANY
(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR
companyname = 'Spring Water Supply'));

Be aware of the difference between <> ANY and NOT IN. x <> ANY y returns true if any
of the values in y are not equal to x. x NOT IN y returns true only if none of the values in
y are equal to x or if the list y is empty

Using ALL:Using ALL:Using ALL:Using ALL:
The ALL modifier determines if the expression evaluates to true for all rows in the
subquery result.

Find all ingFind all ingFind all ingFind all ingredients that cost at least as much as every ingredient in a saladredients that cost at least as much as every ingredient in a saladredients that cost at least as much as every ingredient in a saladredients that cost at least as much as every ingredient in a salad

SELECT name
FROM ingredients
WHERE unitprice >= ALL
(SELECT unitprice
FROM ingredients ing JOIN madewith mw on mw. ingredientid =ing . ingredientid JOIN
items i on mw. itemid =i . itemid WHERE i . name LIKE '%Salad');

Find the name of all ingredients supplied by someone other than Veggies_R_Us orFind the name of all ingredients supplied by someone other than Veggies_R_Us orFind the name of all ingredients supplied by someone other than Veggies_R_Us orFind the name of all ingredients supplied by someone other than Veggies_R_Us or
Spring Water SupplySpring Water SupplySpring Water SupplySpring Water Supply

SELECT name
FROM ingredients
WHERE vendorid <> ANY
(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR
companyname = 'Spring Water Supply');

Correct query:
SELECT name
FROM ingredients
WHERE ingredientid NOT IN
(SELECT ingredientid
FROM ingredients
WHERE vendorid = ANY
(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR
companyname = 'Spring Water Supply'));

Find the most expensive itemsFind the most expensive itemsFind the most expensive itemsFind the most expensive items
SELECT *
FROM items
WHERE price >= ALL
(SELECT price
FROM items);
What is wrong with above query ? Correct query:

SELECT *
FROM items
WHERE price >= ALL
(SELECT max(price)
FROM items);
You might be tempted to believe that >= ALL is equivalent to >= (SELECT MAX()), but
this is not correct. What’s going on here? Recall that for ALL to return true, the
condition must be true for all rows in the subquery. NULL prices evaluate to unknown;
therefore, >= ALL evaluates to unknown so the result is empty. Of course, we can solve
this problem by eliminating NULL prices. However, NULL isn’t the only problem. What
happens when the subquery result is empty?

A common mistake is to assume that the = ALL operator returns true if all of the rows in
the outer query match all of the rows in the inner query. This is not the case. A row in
the outer query will satisfy the = ALL operator only if it is equal to all of the values in
the subquery. If the inner query returns multiple rows, each outer query row will only
satisfy the = ALL predicate if all rows in the inner query have the same value and that
value equals the outer query row value. Notice that the exact same result is achieved by
using = alone and ensuring that only a distinct value is returned by the inner query.

Correlated Subqueries:Correlated Subqueries:Correlated Subqueries:Correlated Subqueries:
Correlated subqueries are not independent of the outer query. Correlated subqueries
work by first executing the outer query and then executing the inner query for each row
from the outer query.

Find tFind tFind tFind the items that contain 3 or more ingredientshe items that contain 3 or more ingredientshe items that contain 3 or more ingredientshe items that contain 3 or more ingredients
SELECT itemid, name
FROM items
WHERE (SELECT COUNT(*)
FROM madewith
WHERE madewith.itemid = items.itemid) >= 3;

Look closely at the inner query. It cannot be executed independently from the outer
query because the WHERE clause references the items table from the outer query. Note
that in the inner query we must use the table name from the outer query to qualify
itemid. How does this execute? Because it’s a correlated subquery, the outer query
fetches all the rows from the items table. For each row from the outer query, the inner
query is executed to determine the number of ingredients for the particular itemid.

Find all of the vendors who referred two or more vendorsFind all of the vendors who referred two or more vendorsFind all of the vendors who referred two or more vendorsFind all of the vendors who referred two or more vendors

SELECT vendorid, companyname
FROM vendors v1
WHERE (SELECT COUNT(*)
FROM vendors v2
WHERE v2.referredby = v1.vendorid) >= 2;

EXISTS:EXISTS:EXISTS:EXISTS:
EXISTS is a conditional that determines if any rows exist in the result of a subquery.
EXISTS returns true if <subquery> returns at least one row and false otherwise.

Find the meals containing an ingredient from the Milk food groupFind the meals containing an ingredient from the Milk food groupFind the meals containing an ingredient from the Milk food groupFind the meals containing an ingredient from the Milk food group

SELECT *
FROM meals m
WHERE EXISTS
(SELECT *
FROM partof p JOIN items on p . itemid =items . itemid
JOIN madewith on items . itemid =madewith . itemid
JOIN ingredients on madewith . ingredientid =ingredients . ingredientid
WHERE foodgroup = 'Milk' AND m. mealid = p . mealid);

Find all of the vendors that did not recommend any other vendorFind all of the vendors that did not recommend any other vendorFind all of the vendors that did not recommend any other vendorFind all of the vendors that did not recommend any other vendor
SELECT vendorid, companyname
FROM vendors v1
WHERE NOT EXISTS (SELECT *
FROM vendors v2
WHERE v2.referredby = v1.vendorid);

Derived Relations Derived Relations Derived Relations Derived Relations ———— Subqueries in the FROM Clause:Subqueries in the FROM Clause:Subqueries in the FROM Clause:Subqueries in the FROM Clause:

List the name and inventory value of each ingredient in the Fruit or Vegetable food List the name and inventory value of each ingredient in the Fruit or Vegetable food List the name and inventory value of each ingredient in the Fruit or Vegetable food List the name and inventory value of each ingredient in the Fruit or Vegetable food
group and its suppliergroup and its suppliergroup and its suppliergroup and its supplier
SELECT name, companyname, val
FROM vendors v,
(SELECT name, vendorid, unitprice * inventory as va l FROM
ingredients i WHERE foodgroup IN ('Fruit', 'Vegetab le')) d
WHERE v.vendorid = d.vendorid

The subquery generates a derived table containing the name, vendor ID, and inventory
value of each ingredient in the specified food groups. Using an expanded form of table
aliases, we name the derived table and its attributes. Next, SQL performs the Cartesian
product of the vendors table and the derived table and applies the join predicate. Recall
that the FROM clause is executed first by the DBMS. When the subquery is executed, no
rows from the other tables have been retrieved. Thus, the DBMS cannot reference
another table inside a subquery in the FROM clause. All derived relations are
uncorrelated subqueries.

There are two advantages of derived relations. First, it allows us to break down complex
queries into easier to understand parts. The second advantage of derived relations is
that we can improve the performance of some queries. If a derived relation is much
smaller than the original relation, then the query may execute much faster.

Subqueries in the HAVING Clause:Subqueries in the HAVING Clause:Subqueries in the HAVING Clause:Subqueries in the HAVING Clause:

We can embed both simple and correlated subqueries in the HAVING clause. This works

much like the WHERE clause subqueries, except we are defining predicates on groups

rather than rows.

FinFinFinFind all vendors who provide more ingredients than Spring Water Supplyd all vendors who provide more ingredients than Spring Water Supplyd all vendors who provide more ingredients than Spring Water Supplyd all vendors who provide more ingredients than Spring Water Supply

SELECT companyname
FROM vendors v, ingredients i
WHERE i.vendorid = v.vendorid
GROUP BY v.vendorid, companyname
HAVING COUNT(*) > (SELECT COUNT(*)
FROM ingredients i, vendors v
WHERE i.vendorid = v.vendorid AND
companyname = 'Spring Water Supply');

Correlated subqueries in the HAVING clause allow us to evaluate per-group
conditionals.

Find the average inventory values for each vendor who recommends at least one other Find the average inventory values for each vendor who recommends at least one other Find the average inventory values for each vendor who recommends at least one other Find the average inventory values for each vendor who recommends at least one other
vendorvendorvendorvendor

SELECT v1 . vendorid , AVG(unitprice * inventory)
FROM ingredients JOIN vendors v1 ON (ingredients . vendorid =v1 . vendorid)
GROUP BY v1 . vendorid
HAVING EXISTS (SELECT *
FROM vendors v2
WHERE v1 . vendorid = v2 . referredby);

This query begins by grouping all of the ingredients together by vendor. Next, for each
vendor, the subquery finds the vendors referred by that vendor. If the subquery returns
any row, EXISTS returns true and the vendor ID and average inventory value are
included in the final result.

Data To be used for LAData To be used for LAData To be used for LAData To be used for LAB#4.B#4.B#4.B#4.
CREATE TABLE items (
 itemid CHAR(5) PRIMARY KEY,
 name VARCHAR(30),
 price NUMERIC(5,2),
 dateadded DATE DEFAULT CURRENT_DATE
);

CREATE TABLE vendors (
 vendorid CHAR(5) NOT NULL,
 companyname VARCHAR(30) DEFAULT 'SECRET' NOT NULL,
 repfname VARCHAR(20) DEFAULT 'Mr. or Ms.',
 replname VARCHAR(20),

 referredby CHAR(5) NULL,
 UNIQUE (repfname, replname),
 PRIMARY KEY(vendorid),
 FOREIGN KEY(referredby) REFERENCES vendors(vendorid) INITIALLY
DEFERRED
);

CREATE TABLE ingredients (
 ingredientid CHAR(5) PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 unit CHAR(10),
 unitprice NUMERIC(5,2),
 foodgroup CHAR(15) CHECK (foodgroup IN ('Milk', 'Meat', 'Bread',
 'Fruit', 'Vegetable')),
 inventory INTEGER DEFAULT 0,
 vendorid CHAR(5),
 CHECK (unitprice * inventory <= 4000),
 FOREIGN KEY(vendorid) REFERENCES vendors(vendorid) INITIALLY DEFERRED
);

CREATE TABLE madewith (
 itemid CHAR(5) REFERENCES items(itemid) INITIALLY DEFERRED,
 ingredientid CHAR(5) REFERENCES ingredients INITIALLY DEFERRED,
 quantity INTEGER DEFAULT 0 NOT NULL,
 PRIMARY KEY(itemid, ingredientid)
);

CREATE TABLE meals (
 mealid CHAR(5) NOT NULL,
 name CHAR(20) UNIQUE,
 PRIMARY KEY(mealid)
);

CREATE TABLE partof (
 mealid CHAR(5),
 itemid CHAR(5),
 quantity INTEGER,
 discount DECIMAL (2, 2) DEFAULT 0.00,
 PRIMARY KEY(mealid, itemid),
 FOREIGN KEY(mealid) REFERENCES meals(mealid),
 FOREIGN KEY(itemid) REFERENCES items(itemid) INITIALLY DEFERRED
);

CREATE TABLE ads (
 slogan VARCHAR(50)
);

CREATE VIEW menuitems AS

(SELECT m.mealid AS menuitemid, m.name, CAST(SUM(price * (1 - discount)) AS
NUMERIC(5,2)) AS price
 FROM meals m LEFT OUTER JOIN partof p ON m.mealid = p.mealid
 LEFT OUTER JOIN items i ON p.itemid = i.itemid
 GROUP BY m.mealid, m.name)
UNION
(SELECT itemid, name, price
 FROM items);

CREATE TABLE stores (
 storeid CHAR(5) NOT NULL,
 address VARCHAR(30),
 city VARCHAR(20),
 state CHAR(2),
 zip CHAR(10),
 manager VARCHAR(30),
 PRIMARY KEY(storeid)
);

CREATE TABLE orders (
 ordernumber INTEGER NOT NULL,
 linenumber INTEGER NOT NULL,
 storeid CHAR(5) NOT NULL,
 menuitemid CHAR(5),
 price NUMERIC(5,2),
 time TIMESTAMP,
 PRIMARY KEY(storeid, ordernumber, linenumber),
 FOREIGN KEY(storeid) REFERENCES stores(storeid)
);

INSERT INTO items VALUES ('CHKSD', 'Chicken Salad', 2.85, '5-JUN-00');
INSERT INTO items VALUES ('FRTSD', 'Fruit Salad', 3.45, '6-JUN-00');
INSERT INTO items VALUES ('GDNSD', 'Garden Salad', 0.99, '3-FEB-01');
INSERT INTO items VALUES ('MILSD', 'Millennium Salad', NULL, '16-AUG-02');
INSERT INTO items VALUES ('SODA', 'Soda', 0.99, '2-FEB-02');
INSERT INTO items VALUES ('WATER', 'Water', 0, '20-FEB-01');
INSERT INTO items VALUES ('FRPLT', 'Fruit Plate', 3.99, '22-NOV-02');

INSERT INTO vendors VALUES ('VGRUS', 'Veggies_R_Us', 'Candy', 'Corn', NULL);
INSERT INTO vendors VALUES ('DNDRY', 'Don''s Dairy', 'Marla', 'Milker', 'VGRUS');
INSERT INTO vendors VALUES ('FLVCR', 'Flavorful Creams', 'Sherman', 'Sherbert',
'VGRUS');
INSERT INTO vendors VALUES ('FRTFR', '"Fruit Eating" Friends', 'Gilbert', 'Grape',
'FLVCR');
INSERT INTO vendors VALUES ('EDDRS', 'Ed''s Dressings', 'Sam', 'Sauce', 'FRTFR');
INSERT INTO vendors VALUES ('SPWTR', 'Spring Water Supply', 'Gus', 'Hing',
'EDDRS');

INSERT INTO ingredients VALUES ('CHESE', 'Cheese', 'scoop', 0.03, 'Milk', 150,
'DNDRY');
INSERT INTO ingredients VALUES ('CHIKN', 'Chicken', 'strip', 0.45, 'Meat', 120,
'DNDRY');
INSERT INTO ingredients VALUES ('CRUTN', 'Crouton', 'piece', 0.01, 'Bread', 400,
'EDDRS');
INSERT INTO ingredients VALUES ('GRAPE', 'Grape', 'piece', 0.01, 'Fruit', 300,
'FRTFR');
INSERT INTO ingredients VALUES ('LETUS', 'Lettuce', 'bowl', 0.01, 'Vegetable', 200,
'VGRUS');
INSERT INTO ingredients VALUES ('PICKL', 'Pickle', 'slice', 0.04, 'Vegetable', 800,
'VGRUS');
INSERT INTO ingredients VALUES ('SCTDR', 'Secret Dressing', 'ounce', 0.03, NULL,
120, NULL);
INSERT INTO ingredients VALUES ('TOMTO', 'Tomato', 'slice', 0.03, 'Fruit', 15,
'VGRUS');
INSERT INTO ingredients VALUES ('WATER', 'Water', 'glass', 0.06, NULL, NULL,
'SPWTR');
INSERT INTO ingredients VALUES ('SODA', 'Soda', 'glass', 0.69, NULL, 5000,
'SPWTR');
INSERT INTO ingredients VALUES ('WTRML', 'Watermelon', 'piece', 0.02, 'Fruit',
NULL, 'FRTFR');
INSERT INTO ingredients VALUES ('ORNG', 'Orange', 'slice', 0.05, 'Fruit', 10, 'FRTFR');

INSERT INTO madewith VALUES ('CHKSD', 'CHESE', 2);
INSERT INTO madewith VALUES ('CHKSD', 'CHIKN', 4);
INSERT INTO madewith VALUES ('CHKSD', 'LETUS', 1);
INSERT INTO madewith VALUES ('CHKSD', 'SCTDR', 1);
INSERT INTO madewith VALUES ('FRTSD', 'GRAPE', 10);
INSERT INTO madewith VALUES ('FRTSD', 'WTRML', 5);
INSERT INTO madewith VALUES ('GDNSD', 'LETUS', 4);
INSERT INTO madewith VALUES ('GDNSD', 'TOMTO', 8);
INSERT INTO madewith VALUES ('FRPLT', 'WTRML', 10);
INSERT INTO madewith VALUES ('FRPLT', 'GRAPE', 10);
INSERT INTO madewith VALUES ('FRPLT', 'CHESE', 10);
INSERT INTO madewith VALUES ('FRPLT', 'CRUTN', 10);
INSERT INTO madewith VALUES ('FRPLT', 'TOMTO', 8);
INSERT INTO madewith VALUES ('WATER', 'WATER', 1);
INSERT INTO madewith VALUES ('SODA', 'SODA', 1);
INSERT INTO madewith VALUES ('FRPLT', 'ORNG', 10);

INSERT INTO meals VALUES ('CKSDS', 'Chicken N Suds');
INSERT INTO meals VALUES ('VGNET', 'Vegan Eatin''');

INSERT INTO partof VALUES ('CKSDS', 'CHKSD', 1, 0.02);
INSERT INTO partof VALUES ('CKSDS', 'SODA', 1, 0.10);
INSERT INTO partof VALUES ('VGNET', 'GDNSD', 1, 0.03);
INSERT INTO partof VALUES ('VGNET', 'FRTSD', 1, 0.01);

INSERT INTO partof VALUES ('VGNET', 'WATER', 1, 0.00);

INSERT INTO ads VALUES ('Grazing in style');
INSERT INTO ads VALUES (NULL);
INSERT INTO ads VALUES ('Bovine friendly and heart smart');
INSERT INTO ads VALUES ('Where the grazin''s good');
INSERT INTO ads VALUES ('The grass is greener here');
INSERT INTO ads VALUES ('Welcome to the "other side"');

INSERT INTO stores VALUES ('FIRST','1111 Main St.','Waco','TX','76798','Jeff
Donahoo');
INSERT INTO stores VALUES ('#2STR','2222 2nd Ave.','Waco','TX','76798-7356','Greg
Speegle');
INSERT INTO stores VALUES ('NDSTR','3333 3rd St.','Fargo','ND','58106','Jeff
Speegle');
INSERT INTO stores VALUES ('CASTR','4444 4th Blvd','San Francsico','CA','94101-
4150','Greg Donahoo');
INSERT INTO stores VALUES ('NWSTR',null,null,'TX',null,'Man Ager');

INSERT INTO orders VALUES (1,1,'FIRST','FRTSD',3.45,'26-JAN-2005 1:46:04.188');
INSERT INTO orders VALUES (1,2,'FIRST','WATER',0.0,'26-JAN-2005 1:46:19.188');
INSERT INTO orders VALUES (1,3,'FIRST','WATER',0.0,'26-JAN-2005 1:46:34.188');
INSERT INTO orders VALUES (2,1,'FIRST','CHKSD',2.85,'26-JAN-2005 1:47:49.188');
INSERT INTO orders VALUES (3,1,'FIRST','SODA ',0.99,'26-JAN-2005 1:49:04.188');
INSERT INTO orders VALUES (3,2,'FIRST','FRPLT',3.99,'26-JAN-2005 1:49:19.188');
INSERT INTO orders VALUES (3,3,'FIRST','VGNET',4.38,'26-JAN-2005 1:49:34.188');
INSERT INTO orders VALUES (1,1,'#2STR','CKSDS',3.68,'26-JAN-2005 2:02:04.188');
INSERT INTO orders VALUES (1,2,'#2STR','CHKSD',2.85,'26-JAN-2005 2:02:19.188');
INSERT INTO orders VALUES (1,3,'#2STR','SODA ',0.99,'26-JAN-2005 2:02:34.188');
INSERT INTO orders VALUES (1,4,'#2STR','GDNSD',0.99,'26-JAN-2005 2:02:49.188');
INSERT INTO orders VALUES (2,1,'#2STR','CHKSD',2.85,'26-JAN-2005 2:04:04.188');
INSERT INTO orders VALUES (2,2,'#2STR','SODA ',0.99,'26-JAN-2005 2:04:19.188');
INSERT INTO orders VALUES (3,1,'#2STR','CHKSD',2.85,'26-JAN-2005 2:05:34.188');
INSERT INTO orders VALUES (3,2,'#2STR','FRPLT',3.99,'26-JAN-2005 2:05:49.188');
INSERT INTO orders VALUES (3,3,'#2STR','GDNSD',0.99,'26-JAN-2005 2:06:04.188');
INSERT INTO orders VALUES (1,1,'NDSTR','WATER',0.0,'26-JAN-2005 2:1:04.188');
INSERT INTO orders VALUES (1,2,'NDSTR','FRPLT',3.99,'26-JAN-2005 2:1:19.188');
INSERT INTO orders VALUES (2,1,'NDSTR','GDNSD',0.99,'26-JAN-2005 2:15:34.188');
INSERT INTO orders VALUES (3,1,'NDSTR','VGNET',4.38,'26-JAN-2005 2:16:49.188');
INSERT INTO orders VALUES (3,2,'NDSTR','FRPLT',3.99,'26-JAN-2005 2:17:04.188');
INSERT INTO orders VALUES (3,3,'NDSTR','FRTSD',3.45,'26-JAN-2005 2:17:19.188');
INSERT INTO orders VALUES (3,4,'NDSTR','SODA ',0.99,'26-JAN-2005 2:17:34.188');
INSERT INTO orders VALUES (1,1,'CASTR','CHKSD',2.85,'26-JAN-2005 2:22:04.188');
INSERT INTO orders VALUES (1,2,'CASTR','GDNSD',0.99,'26-JAN-2005 2:22:19.188');
INSERT INTO orders VALUES (2,1,'CASTR','SODA ',0.99,'26-JAN-2005 2:23:34.188');
INSERT INTO orders VALUES (2,2,'CASTR','FRTSD',3.45,'26-JAN-2005 2:23:49.188');
INSERT INTO orders VALUES (2,3,'CASTR','SODA ',0.99,'26-JAN-2005 2:24:04.188');

INSERT INTO orders VALUES (2,4,'CASTR','VGNET',4.38,'26-JAN-2005 2:24:19.188');
INSERT INTO orders VALUES (3,1,'CASTR','VGNET',4.38,'26-JAN-2005 2:25:34.188');
INSERT INTO orders VALUES (3,2,'CASTR','FRPLT',3.99,'26-JAN-2005 2:25:49.188');
INSERT INTO orders VALUES (3,3,'CASTR','FRTSD',3.45,'26-JAN-2005 2:26:04.188');
INSERT INTO orders VALUES (3,4,'CASTR','WATER',0.0,'26-JAN-2005 2:26:19.188');
INSERT INTO orders VALUES (3,5,'CASTR','CHKSD',2.85,'26-JAN-2005 2:26:34.188');

**

