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Overview
Chapter 1 & 2
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“Ch 1 Must-do-problems”: 

17, 20

4, 11,14, 17, 19, 35, 36

“Ch 2 Must-do-problems”: 
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Learning Objectives
 Signatures of a particle in motion and their 

mathematical representations

Velocity, Acceleration, Kinematics

 Choice of coordinate systems that would 

ease out a calculation.

Cartesian and (Plane) Polar coordinate

 Importance of equation of constraints

Some application problems
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Skip

 Vectors and free body diagram 

 Tension in massless string and with strings having

mass, string-pulley system.

 Capstan problem

While sailing it is used 

by a sailor for lowering 

or raising of an anchor 
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Capstan

A rope is wrapped around a fixed

drum, usually for several turns. 

A large load on one end is held

with a much smaller force at the

other where friction between drum

and rope plays an important role

You may look at:

Example 2.13 & Exercise 2.24 
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Velocity

Particle in translational motion  
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“ r-naught”

Position vector in Cartesian system 
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Acceleration
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Kinematics in Genaral 

In our prescription of “r-naught”, Newton’s 2nd law:

 t,r,rFrm 
 

To know precisely the particle trajectory, We need:

 Information of the force

 Two-step integration of the above (diff) equation

 Evaluation of constants and so initial conditions 

must be supplied

 A system of coordinate to express position vector
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Simple form of Forces

(Force experienced near earth’s surface)
ttanconsa,amF 


•

 tFF


•
(Effect of radio wave on Ionospheric electron)

(Any guess ???)

(Gravitational, Coulombic, SHM) rFF


•

 rFF 


•
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Example 1.11

Find the motion of an electron of charge e and 

mass m, which is initially at rest and suddenly 

subjected to oscillating electric field, E = E0sint.

The coordinate system to work on

We decide:

• Information of force.

• Initial condition.

We check:
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Solution

Translate given information to mathematical form:

m

tsinEe

m

eE
reErm 0 





 1.

…..but the acceleration is NOT constant 

As E0 is a constant vector, the motion is safely 1D

tsina
m

tsineE
x 0

0 


 m

eE
a 0

0 
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Solution Contd.

Step 1: Do the first integration

1
0 Ctcos

a
x  




Step 2: Plug in the initial conditions to get C1

At, t = 0, 


0
1

a
c0x 





00 a

tcos
a

x Hence,
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Solution Contd.

What would be the fate of the electrons?

tsin
a

t
a

x
2

00 




Step 3: Carry out the 2nd. Integration and get the

constant thro’ initial conditions
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Graphical Representation

Red: “sin” term

Black: Linear term

Blue: Combination
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Viscous Drag

• Motion of a particle subjected to a resistive force

Examine  a particle motion falling under

gravity near earth’s surface taking the

frictional force of air proportional to the

first power of velocity of the particle. The 

particle is dropped from the rest.



16

Solution

Equation of motion:

Cvmg
dt

dv
m

dt

xd
mF

2

2



Resistive force proportional to velocity

(linear drag force)
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Final Equation

 kte1
k

g

dt

dx
v 

If the path is long enough, t

terv
k

g
v  “Terminal

Velocity”

Solving the differential equation and plucking the

correct boundary condition (Home Exercise)

m

C
k 
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Important Results & A Question

Some calculated values of terminal velocity is given:

1. Terminal velocity of spherical oil drop of diameter 

1.5 m and density 840kg/m3 is 6.1x10-5 m/s.This

order of velocity was just ok for Millikan to record it

thro’ optical microscope, available at that time.

2. Terminal velocity of fine drizzle of dia 0.2mm is 

approximately 1.3m/s.

How one would estimate these values?
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Circular Motion

Particle in uniform circular motion:

•
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vr
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…as expected
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t
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•

 t
r


x

Coordinate to Play

yĵxîr Pat 


Position vector in Cartesian form 

where we need to handle two
unknowns, x and y

P

For this case, r = const & particle position is

completely defined by just one unknown 

The Key:

But also,  ,rrr Pat




Position vector in Polar form 

y
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Coordinate Systems
Choice of coordinate system is dictated (mostly) 

by symmetry of the problem

Plane polar coordinate (r, )

• Motion of earth round the sun
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• Electric Field around a point charge

Other Examples

Spherical polar coordinate P (r, , )

(r,,)
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• Mag. field around a current carrying wire

Other Examples

Cylindrical polar coordinate P (, , z)
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Plane Polar System

How to develop a plane polar coordinate system ?

x

y

î

ĵ
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 r̂

̂



To Note:

Unit vectors are drawn in the direction of 

increasing coordinate….THE KEY

 y,xP
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Relation with (XY)
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cosĵsinîˆ

sinĵcosîr̂





1
1

cos

sin

  yĵxîry,xP 


rr̂r 


How pt P (x,y) expressed 

in polar form??

Q. Is  missing here?
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Unit Vectors





cosĵsinîˆ

sinĵcosîr̂





2. Dissimilarity: ???????.

0ˆ.r̂0ĵ.î  

Polar unit vectors are NOT constant vectors; they

have an inherent  dependency…. (REMEMBER)

ĵAîAA yx 



ˆAr̂AA r 



1. Similarity: Use of Cartesian & Polar unit vectors to express

a vector and are orthogonal to each other
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Consequence 

As polar unit vectors are not constant vectors,

it is meaningful to have their time derivatives

Useful expressions of velocity & acceleration

yĵxîr 


 yĵxîr  

r̂rr 
  ??? 

velocity
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Velocity Expression

r
 r̂

̂



 

 ˆrr̂r

dt

r̂d
rr̂rr̂r

dt

d
rv
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 ˆrr̂rv 




Conclusion

“Radial Part vr” “Tangential Part v”

In general, the velocity expressed in  plane polar

coordinate has a radial and a tangential part. For 

a uniform circular motion, it is purely tangential.
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Acceleration

  ˆrr̂r
dt

d

dt

rd
ra 






    ˆr2rr̂rra 2 




“Radial Part ar” “Tangential Part a”

Do these steps as HW
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Example
Find the acceleration of a stone twirling on the end of 

a string of fixed length using its polar form 



r=l=const
    ˆr2rr̂rra 2 




   




ˆrr̂r

ˆrr̂ra

2

2



 

“Centripetal” accln. (v2/r) Tangential accln.
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Example 1.14 

A bead moves along the spoke of 

a wheel at a constant speed u mtrs

per sec. The wheel rotates with 

uniform angular velocity           rad.

per sec. about an axis fixed in space. 

At t = 0, the spoke is along x-axis 

and the bead is at the origin. Find 

vel and accl. in plane polar coordinate
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Solution (Velocity)

   ;urutr

 ˆrr̂rv 




 ˆutr̂uv 
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Solution (Acceleration)

0

0r;ur;utr





 



    ˆr2rr̂rra 2 




    ˆu2r̂uta 2 
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Q. How Newton’s Law of motion look like in 

polar form?

Newton’s Law (Polar)

ymFxmF yx
 

In 2D Cartesian form (x,y) :

In 2D Polar form (r,), can we write:


 mFrmFr 
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Newton’s Law in Polar Form

   





ˆar̂a

ˆr2rr̂rra

r

2



 


Acceleration in polar coordinate:

 
  








mr2rmF

rmrrmF 2

r




Newton’s eq.
in polar form

Newton’s eq.s in polar form DO NOT scale
in the same manner as the Cartesian form
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Constraint
Any restriction on the motion of a body is a constraint

How these things are associated with constraints?
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More on Constraints

Bob constrained to move on an arc of 

a circle and tension T in the string is the 

force of constraint associated with it



The rollers roll down the incline

without flying off and the normal

reaction is the force of constraint

associated \with it

Common  Both are rigid bodies where rigidity is the

constraint and force associated with it is ……………..
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Example 1

Take a simple pendulum with massless string 

x

y

l

0z

.constlyx 222





Eq.s of constraint

Constraints can be viewed mathematically by one/more eq. 

of constraint in the coordinate system it is used to express 

(Note: Constraints may involve inequations too)
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Example 2

If a drum of radius R has to roll down a slope 

without slipping, what is the corresponding eq. 

of constraint ? 

R

x

Q. How eq. of constraints help us get useful information?

xRxR   

Eq. of constraint:
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Useful Information
For a drum that is rolling without slipping down

an incline from rest, its angular acceleration ()

is readily found using the equation of constraint.

R

a

at
2

1
xR 2











R

a

x

Home Study: Ex. 2.4a
(Prob 1.14)
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Ex 2.4b
A pulley accelerating upward at a rate A in a 

“Mass-Pulley” system. Find how acceleration 

of bodies are related (rope/pulley mass-less).

yp

y1 y2

1

2

R

   2p1p yyyyRl 

Constrain Equation:

 21p yy
2

1
y  

A
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Ex 2.7

B

A

Initial conditions:

• B stationary and A rotating

by a mass-less string with 

radius r0 and constant angular 

velocity 0. String length = lz

Q. If B is released at t=0, what is its 

acceleration immediately afterward?

Steps: 1. Get the information of force

2. Write the eq. of motions

3. Get the constraint eq. if there is any and 
use it effectively

r0
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Ex 2.7 contd.

MA

MB

T

T


z
WB

r̂

Eq.s of motion:

   

   

 3TWzM

20rr2M

1TrrM

BB

A

2

A

















And, the eq. of constraint:

)4(zrlzr  
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Ex 2.7 contd.

Using the eq.s of motion and the constraint:
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Fictitious Force

Two observers O and O’, fixed relative to two coordinate 

systems Oxyz and O’x’y’z’, respectively, are observing the 

motion of a particle P in space. 

O

x

y

z

O’
x’

y’
z’ Find the condition when

to both the observers the

particle appears to have 

the same force acting on

it?

P
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O

x

y

z

O’
x’

y’

z’ P

Formulation

r
r’

R

rrR 


We look for:

 
0

dt

Rd

dt

rrd

dt

rd
m

dt

rd
m

FF

2

2

2

2

2

2

2

2















ttanCons
dt

Rd



“Inertial Frames”
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Non-inertial Frames

ttanCons
dt

Rd




If O’x’y’z’ is accelerating 

To observers O and O’, particle will

have different forces acting on it

fictitioustrue

2

2

2

2

2

2

FFF

dt

Rd
m

dt

rd
m

dt

rd
m
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Problem Exercise 2.16

A 450 wedge is pushed along a table with a 

constant acceleration A. A block of mass m
slides without friction on the wedge. Find the

acceleration of the mass m.

450

A

x

y
m

Fixed on Table and “A”

is measured here
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Solution

We would like to use the concept
of fictitious force.....

450

A

x

y Attach the ref. frame to the

moving wedge....
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Force Diagram

y
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fsurface 
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Accelerations

Acceleration of the block down the
incline:
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These are wrt the wedge!
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“Real” Accelerations
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To find the acceleration of m, we must recollect:


