BITS Pilani

  • Page last updated on Friday, March 24, 2023

Publications

banner
Publications

Publications

  1. C. Carstensen, R. Khot, A.K. Pani (2023), Nonconforming virtual
    elements for the biharmonic equation with Morley degrees
    of freedom on polygonal meshes,SIAM J.
    Numer. Anal. (Accepted). pp.1-25.p,
  2. C. Carstensen, R. Khot, A.K. Pani (2023), Supplementary Materials:
    Nonconforming virtual elements for the biharmonic equation
    with Morley degrees of freedom on polygonal meshes,
    SIAM J.
    Numer. Anal. (Accepted). pp.1-21.
  3. R. Jain, A. K. Pani and S. Yadav (2023),  HDG Method for Linear Parabolic Integro-Differential 
    Equations,Applied Mathematics and Computation (Accepted).
  4. N. Shravani and G.Murali Mohan Reddy and A. K. Pani(2022), Anisotropic a posteriori error analysis for the two-step backward differentiation formula for parabolic integro-differential equation, J. Sci. Comp.
    93 (2022), no. 1,Paper No. 26, 22 pp. 
  5. C. Carstensen, R. Khot, A.K. Pani (2022), A priori and a posteriori error analysis of the lowest-order NCVEM for second-order linear indefinite elliptic problems, Numerische Mathematik, 151 (2022), no. 3, 551–600. 65N30 (65N12 65N15 65N50). https://doi.org/10.1007/s00211-022-01296-x
  6. Huangxin Chen, Amiya K. Pani and Weifeng Qiu (2022),A mixed finite element scheme for biharmonic equation with variable coefficient and von Karman equations, Commun. Comput. Phys. pp.1-33. doi: 10.4208/cicp.OA-2021-0255
  7. R. Shokeen, A. Patel, and A.K. Pani (2022), Primal hybrid method for quasi-linear parabolic problems,  J. Sci. Comput. 92 (2022), no. 1, Paper No. 10, 26 pp.
  8. C. Carstensen, N. Nataraj, A.K. Pani (2022), Stability of mixed FEMs for non-selfadjoint indefinite  second order linear elliptic PDEs , Numer. Math. 150 (2022), no. 4, 975–992.
  9. M. Khebchareon, A. K. Pany and Amiya K. Pani (2022), An H1-Galerkin mixed finite element method for identification of time dependent parameters in parabolic problems,  Appl. Math. Comput. 424 (2022), Paper No. 127045, 14 pp.
  10. B. Bir, D.Goswami, A.K.Pani (2022), Finite Element Penalty Method for the Oldroyd Model of Order One with Non-smooth Initial Data, Comput. Methods Appl. Math. 22 (2022), no. 2, 297–325, https://doi.org/10.1515/cmam-2022-0012.
  11. B.Bir, D.Goswami, A.K. Pani (2021),Backward Euler method for the equations of motion arising in Oldroyd model of order one with nonsmooth initial data, IMA Journal of Numerical Analysis,
    https://doi.org/10.1093/imanum/drab072,arXiv preprint arXiv:2106.16052. 
  12. V.Anaya, D.Mora, A.K Pani, R.Ruiz-Baier (2021),Numerical analysis of a new formulation for the Oseen equations in terms of vorticity and Bernoulli pressure, Journal of Numerical Mathematics,pp.1-31. Article number: 000010151520210053.https://doi.org/10.1515/jnma-2021-0053.  arXiv preprint arXiv:2102.05816.
  13. W. Kang, B.A. Egwu, Y. Yan, A. K. Pani (2021), Galerkin finite element approximation of a stochastic semilinear fractional subdi usion with fractionally integrated additive noise, IMA J. Numer. Anal. pp.1-35, DOI: 10.1093/imanum/drab035.

Quick Links

    An Institution Deemed to be University estd. vide Sec.3 of the UGC Act,1956 under notification # F.12-23/63.U-2 of Jun 18,1964

    © 2025 Centre for Software Development,SDET Unit, BITS-Pilani, India.

    Designed and developed by fractal | ink design studios